Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диссипация энергии неполная

Градиент функции 312 Диссипация энергии неполная 677  [c.721]

Однако данное уравнение динамического равновесия конструкции будет неполным, так как при этом не учитывается демпфирование (обычно оно учитывается введением сил диссипации, зависящих от скорости). Демпфирование является основным фактором, который ограничивает рост амплитуд колебаний в режиме резонанса. Действие его проявляется в любой колебательной системе. Например, если отклонить кузов автомобиля, а затем отпустить его, то колебания быстро затухнут, что объясняется действием специально установленных демпферов. Когда колеса автомобиля наезжают на препятствие, упругие элементы подвески резко сжимаются. Если бы демпферы отсутствовали, то кузов автомобиля раскачивался после этого долгое время, пока не рассеялась бы энергия.  [c.72]


Механизм диссипации энергии деформируемых упорядоченных сплавов при переходе через порог упругости связан с движением сверхдислокаций. Это предопределяется исходной структурой упорядоченных сплавов, обладающих сверхструктурой. Ответственным за образование сверхдислокаций в упорядоченных сплавах является особый тип дефекта — антифазные границы. Механизм их образования следующий. Антифазные границы — это плоские дефекты при упорядочении, как правило, возрастает период идентичности в направлении вектора сдвИга. Поэтому при движении дислокации с обычным вектором Бюргерса за ней остается полоска антифазной границы из-за неполного, с точки зрения идеальной сверхструктуры, сдвига одной части кристалла относительно другой. В результате в плоскости границы образуются пары из одинаковых соседств атомов, которые отсутствуют в теле упорядоченного домена.  [c.253]

Простое определяющее соотношение для расчета ударной адиабаты в области неполного уплотнения пористого материала предложено в работе [38]. Модель основана на предположениях, что геометрические характеристики пор и матрицы примерно одни и те же как в случае ударного сжатия, так и в условиях изостатического уплотнения, а эффектами скорости деформирования и диссипации энергии при ударном сжатии можно пренебречь. С зтими предположениями получено определяющее соотношение в виде  [c.146]

Из состояний равновесия, определяемых условиями (1) или (2), практически реализуются лишь те, к-рые явл. устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике. с. М Тарг РАВНОВЕСИЕ статистическое состояние замкнутой статистич. системы, в к-ром ср. значения всех физ. величин, характеризующих состояние, не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в терлюдинамике. Р. с. не явл, равновесным в механич. смысле, т. к. в системе при этом постоянно возникают малые флуктуации физ. величин около ср. значений. Теория Р. с. даётся в статистич. физике, к-рая описывает его при помощи разл. Гиббса распределений (микроканонич., канонич. или большого канонического) в зависимости от типа контакта системы с окружающей средой, запрещающего или допускающего обмен с ней энергией или ч-цами. В теории неравновесных процессов важную роль играет понятие неполного Р. с., при к-ром параметры, характеризующие состояние системы, очень слабо зависят от времени. Широко применяется понятие локального Р. с., при к-ром темп-ра и химический потенциал в малом элементе объёма зависят от времени и пространств, координат её ч-ц. См. Кинетика физическая. д. н. Зубарев. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ, состояние термодинамич. системы, в к-рое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии теплопровод ность, диффузия, хим. реакции и др. В состоянии Р. т. параметры системы не меняются со временем (строго говоря, те из параметров, к-рые не фиксируют заданные условия существования системы, могут испытывать флуктуации — малые колебания около своих ср. значений). Изоляция системы не исключает определённого типа контактов со средой (напр., теплового контакта с термостатом, обмена с ним в-вом). Изоляция осуществляется обычно при помощи неподвижных стенок, непроницаемых для в-ва (возможны также случаи подвижных стенок и полупроницаемых перегородок). Если стенки не проводят теплоты (как, напр., в сосуде Дьюара), то изоляция наз. адиабатической. При теплопроводящих (диатермических) стенках между системой и внеш  [c.601]


С явлением диссипации мы познакомимся более подробно в следующем параграфе при рассмотрении поглощения звука в релаксирующей среде. Поглощение звуковых волн представляет собой характерный пример диссипации механической энергии. Примером неполного использования энергии вследствие необратимости может служить рассмотренный выше идеализированный случай истечения газа в пустоту с полностью замороженными колебаниями. В кинетическую энергию разлета идет только обратимая часть внутренней энергии энергия поступательных и вращательных степеней свободы, а энергия колебаний так и остается в молекулах, благодаря чему скорость истечения оказывается меньшей. Подобные эффекты необратимости при наличии неравновесных процессов могут привести к дополнительным потерям в высокоскоростных турбинах при высоких температурах, в соплах ракетных двигателей и т. д. На использовании эффекта повышения энтропии с течением времени основан независимый метод измерения времени колебательной релаксации т, примененный Кантровицем [1] для исследования релаксации в СОг.  [c.427]


Смотреть страницы где упоминается термин Диссипация энергии неполная : [c.167]    [c.177]   
Курс теоретической механики (2006) -- [ c.677 ]



ПОИСК



Диссипация

Диссипация неполная

Диссипация энергии

Диссипация энергии неполная полная



© 2025 Mash-xxl.info Реклама на сайте