Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фабри —Перо фаза волны

Согласно (228.3) на длине L укладывается целое число полуволн, т. е. равенство (228.3) совпадает с условием максимума интенсивности в интерференционной картине, создаваемой в интерферометре Фабри-Перо. Такое совпадение неудивительно, поскольку условие цикличности для фазы означает синфазность волн, прошедших любое число циклов, а это же условие определяет и максимумы интерференционной картины (см. 30).  [c.797]


В приёмниках на основе фазовой модуляции света приём звука осуществляется с помощью интерферометрия. схем (Маха — Цендера, Майкельсона, Фабри — Перо и др.) благодаря интерференции световых волн, по-разному промодулированных звуком. Изменение фазы световой олны Дф происходит в результате изменения эфф. показателя преломления Пдф и длины световода L под действием звукового давления р  [c.461]

Интерферометр работает в оптимальном режиме при коэффициентах отражения для крайних зеркал 1 = 7 3 = 0,8 и среднего зеркала Рч = 0,998. Для создания такого высокого коэффициента отражения в качестве средней пластины Р используется эталон Фабри—Перо с малым промежутком (см. 18). Объект исследования — газоразрядная аргоновая плазма, которая возникает в разрядной трубке Г, наполненной аргоном под малым давлением. Перед зажиганием разряда интерферометр должен быть настроен на равномерно освещенное поле. Для этого зеркала Р , Р и Р устанавливаются строго параллельно. После зажигания разряда в поле зрения интерферометра возникают интерференционные кольца. Интерферограмма такой плазмы представляет собой концентрические интерференционные кольца, соответствующие областям одинаковой разности фаз и, следовательно, одинаковой плотности частиц плазмы (рис. 23.2). Разность хода между лучами, образующими соседние интерференционные кольца, равна %. Эта разность хода набегает в результате того, что показатель преломления плазмы меняется от точки к точке вдоль радиуса трубки по определенному закону. Его можно экспериментально установить, если измерить расстояние между максимумами интерференционных полос и определить цену одной полосы. Изменение показателя преломления Ап соответствует изменению разности хода на одну длину волны X.  [c.182]

Другая схема фазовой коррекции заключается в использовании многократного отражения одного из лучей света в резонаторе с высокой добротностью Q. Пусть, например, вторая гармоника отражается, пройдя путь с1 = я Ак)- равный расстоянию между пластинами интерферометра Фабри — Перо. После того как вторая гармоника вернется назад к передней пластине и снова отразится от нее, она опять окажется в фазе сама с собой и с падающей бегущей волной основной частоты. Эффективная длина взаимодействия и к, п. д. преобразования возрастают в Q раз. Если резонатор одновременно настроен на основную частоту и частоту второй гармоники, то его максимальная длина равна с = = зтС (Ай) . Когда многократное отражение испытывают обе волны, размер резонатора уменьшается, но выигрыша в максимально достижимой величине коэффициента преобразования не получается. Ясно, что очень сильное увеличение коэффициента преобразования могло бы привести к почти полному превращению излучения основной частоты во вторую гармонику. Однако максимально достигнутая до настоящего времени величина коэффициента преобразования, судя по опубликованным сообщениям, равна 10 .  [c.323]


Установим теперь условия, при которых электрон может двигаться по сети, показанной на рис. 7.4. Соответствующий анализ подобен рассмотрению интерферометра Фабри — Перо в оптике, но имеются и два существенных отличия. Во-первых, падающая и отраженная волны разнесены в пространстве волна у приходит снизу, а волна с единичной амплитудой — сверху и, во-вторых, надо потребовать выполнения условий периодичности, допускающих изменение фазы на некоторую величину а при переходе  [c.405]

Рассмотрим теперь критерий возникновения лазерной генерации в более строгой форме. Начнем с построения модели одномерного лазера (рис. 5,4). Прежде всего эта модель включает в себя активную среду, помещенную между двумя плоскопараллельными зеркалами (резонатор Фабри — Перо). Пусть коэффициент отражения по амплитуде волны полностью отражающего зеркала равен гг, а полупрозрачного (выходного) зеркала равен г, и пусть коэффициент пропускания по амплитуде последнего зеркала есть Предположим, что спонтанное излучение дает всплеск электромагнитного поля вблизи полностью отражающего зеркала. Проходя между двумя зеркалами туда и обратно, эта электромагнитная волна усиливается (если эффективный коэффициент усиления а положительный) и претерпевает сдвиг фазы к(=2п/Х) на единице пройденного пути.  [c.171]

В приборе, подобном интерферометру Майкельсона или эталону Фабри—Перо, мы имеем дело с интерференцией лучей, обладающих огромной разностью хода (около миллиона длин волн). Поэтому для наблюдения интерференции требуется очень большая монохроматичность света. Физическая причина, в силу которой немонохроматический свет не может давать интерференционных картин при большой разности хода, лежит в следующем. Как мы видели в 4, степень монохроматичности определяется длительностью правильного синусоидального колебания, имеющего место при излучении света. Другими словами, чем больше правильных синусоидальных колебаний с неизменной амплитудой и фазой свершится в атоме раньше, чем прекратится его излучение, тем более моно-хроматичен испускаемый им свет. Всякий обрыв правильного сину-  [c.142]

Дополнительные сведения о свойствах трехзеркальных неустойчивых резонаторов и возможностях их применения имеются в [16], 3.4 и 4.3. К сожалению, ряд перспективных идей, относящихся к подобным схемам и высказьюавшихся нами еще в 70-е годы, пока не реализован. Судя по всему, значительного повышения потерь неустойчивых резонаторов с отверстиями можно достичь путем искусственного сглаживания края выходного зеркала (с целью всемерного уменьшения / отр1) При необходимости роль аппендикса может быть существенно усилена размещением в нем дополнительного активного элемента малого сечения (попытки добиться аналогичного эффекта путем внутрирезонаторного инициирования стягивающейся в центр сходящейся волны приводят к резкому росту расходимости излучения, см [50], а также 4.1). Наконец, в задачах управления спектром можно пытаться воспользоваться тем обстоятельством, что между смешивающимися благодаря дифракции волнами, идущими из аппендикса и от прилегающей к отверстию части вогнутого зеркала, существует разность фаз, определяемая двойной длиной аппендикса, благодаря чему у оси образуется отдаленное подобие отражательного интерферометра Фабри — Перо.  [c.232]

В устройстве, показанном на рис. 5.9, частота излучения лазера непрерывно меняется настроечным элементом. Таким элементом может служить, например, фильтр Лио, эталон Фабри— Перо или интерференционный фильтр с клиновидными слоями. (Последний представляет собой четырехслойную диэлектрическую систему, в которой для некоторого направления толщина слоев меняется по линейному закону. Поэтому перемещение фильтра в этом направлении позволяет менять длину волны.) При применении призмы может быть использован резонатор V-образной формы. Применяя различные красители, можно при синхронной накачке лазера получать пикосекундные и субпико-секундные импульсы с возможностью плавной перестройки длины волны излучения оптическим фильтром в спектральном диапазоне примерно от 420 до 1000 нм. Особое внимание при этом следует обращать на относительно точную регулировку длины резонатора лазера на красителе и частоты следования импульсов лазера накачки. Это требует обеспечения высокой термической и механической стабильности лазерной системы. Следует подчеркнуть, что частота следования импульсов лазера накачки определяется частотой активного модулятора и может несколько отличаться от частоты прохода /(2L) соответствующего холодного резонатора (т. е. резонатора лазера без накачки активной среды). Поэтому необходимо подобрать длину резонатора лазера на красителе, согласовав ее с точностью порядка 10 с оптимальной частотой модуляции. Если не осуществляется постоянная подстройка частоты модуляции и длины резонатора лазера на красителе, то эти величины должны сохранять свои значения с точностью около Поэтому применяют высокочастотные генераторы с высокой стабильностью колебаний как по амплитуде, так и по фазе. Резонаторы монтируются на вибропоглощающих подставках и снабжаются стеклянными трубками, исключающими воздействие флуктуаций воздушных потоков. Осуществляется глубокая компенсация теплового расширения резонатора. Температура оптических элементов по возможности поддерживается постоянной, так чтобы изменение оптической длины не превышало 0,1 мкм. Для регулировки длины резонатора можно, например, поместить выходное зеркало резонатора лазера на красителе на микрометрический столик, позволяющий фиксировать изменение длины резонатора с точностью до 0,1 мкм.  [c.177]


Для интерферометра Фабри—Перо с аппаратной функцией (6.47) пределом разрешения можно считать шир1ину контура на половине высоты. Провал в наблюдаемом контуре от двух находящихся на таком расстоянии монохроматических линий составляет около 17%, т. е. это условие практически совпадает с обобщенным критерием Рэлея. Ширине контура соответствует изменение разности фаз на е = 2(1—Р)//Я [см. (5.74)]. Разность фаз 6 интерферирующих волн в максимуме т-го порядка равна 2лт. Изменению ее иа е соответствует изменение длины волны на 6Я. = [е/(2л/п)]Я., откуда для разрешающей силы Я./6Я. находим  [c.325]

Определим теперь минимальную разность длин волн Ь К = V — X, соответствующую такому критерию разрешения. Все величины, относящиеся к свету с длиной волны %, будем обозначать нештрихо-ванньши, а к длине волны л — штрихованными буквами. Показатель преломления п будем считать одним и тем же для обеих длин волн. (Это строго выполняется только в интерферометре Фабри — Перо.) Тогда, независимо от д лины волны, всем падающим лучам одного и того же направления будут соответствовать преломленные лучи также одного направления. В точке Л для длины волны Я. получается интерференционный максимум т-го порядка, а потому Ф = 2тя. В той же точке волна с длиной Я максимума уже не дает. Для такой волны разность фаз имеет значение Ф = 2тя + (1 — R)IYR, т. е. в рассматриваемой точке Ф — Ф = = бФ = (1 — R)lYl(. Но ввиду одинаковости я и ijj для обеих волн из формулы Ф = (4яс я os ф)/Х следует бФ/Ф = = I бЯ/А. . Учтя, что в максимуме Ф = 2ят, поэтому находим  [c.248]

Под воздействием лазерных импульсов происходит быстрый нагрев поверхности, благодаря чему возникают термические напряжения, порождающие сложную совокупность волн - объемных, сдвиговых, лэмбовских, в частности, поверхностную волну. Энергия отдельного импульса составляет около 5 мДж и по мнению разработчиков не приводит к заметной модификации поверхности. Излучение лазера фокусируется в линию на поверхности изделия, перпендикулярную его оси, что способствует преимущественной генерации поверхностной волны, направленной вдоль оси. Вызванные волной колебания поверхности регистрируют на некотором расстоянии с помощью лазерного интер -ферометра. Для этого используют отраженный от колеблющейся поверхности луч от второго, аргонового лазера, работающего в непрерывном режиме, модулированный по фазе колебаниями поверхности. Луч фокусируется и направляется на интерферометр Фабри-Перо. Последний преобразует фазовые сдвиги отраженной световой волны в изменения интенсивности света, регистрируемые с помощью фотодиода.  [c.214]

В основе действия квантовых усилителей и генераторов лежит так называемое отрицательное поглощение. Сущность его заключается в том, что на поглощающую систему, содержащую некоторое количество возбужденных атомов, падает квант, соответствующий по значению кванту, который должен излучиться при переходе возбужденных атомов в нормальное состояние, и тогда из системы в одном направлении выйдут два кванта. Вместо того, чтобы поглотиться, падающий квант вынуждает излучиться второй квант, совпадающий с ним по частоте и направлению движения, т. е. создает вынужденное или индуцированное излучение. При этом испускаемая, т. е. генерируемая, световая волна оказывается точно в фазе с волной, которая была причиной ее возникновения. Вещество, содержащее большое количество атомов в возбужденном состоянии — активное вещество , — получается подачей электромагнитной энергии на длине волны, отличающейся от длины волны вынужденного излучения. Этот активизирующий процесс называется оптической накачкой. Таким образом, атомы переводятся в возбужденное состояние оптической нак -жой. Чтобы вынужденное излучение преобладало над поглоихетием, большинство атомов должно находиться в возбужденном состоянии. Активная среда помещается в резонатор, представляющий собой систему, подобную эталону Фабри и Перо.  [c.69]


Смотреть страницы где упоминается термин Фабри —Перо фаза волны : [c.174]    [c.713]    [c.104]    [c.579]   
Основы оптики (2006) -- [ c.30 ]



ПОИСК



Волны фаза волны

П фазы

Перила

Перова

Рен (перо)

Фабри и Перо

Фаза волны



© 2025 Mash-xxl.info Реклама на сайте