Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Комплексная амплитуда податливость

Такой подход требует также обобщения понятий динамической жесткости и податливости как прямого и обратного отношений комплексной амплитуды силы к амплитуде перемещения. Наряду с податливостью могут использоваться отношения комплексных скорости или ускорения (отличающихся только коэффициентами гш) к силе.  [c.7]

Динамические жесткость и податливость, механический импеданс. Динамической жесткостью механической системы называют отношение амплитуды внешней гармонической силы к комплексной амплитуде колебаний. Для системы с одной степенью свободы динамическая м есткость  [c.105]


Аналогичным образом вводится матрица динамических податливостей источника в точках крепления виброизоляторов, связывающая комплексные амплитуды перемещений точек С1,. .., (см. рис. 1) с комплексными амплитудами реакций виброизоляторов, приложенных в этих точках к источнику  [c.225]

В некоторых случаях, в частности для систем с высоким демпфированием, бывает необходимо измерить ширину полосы для амплитуды мнимой части Iml ((a) динамических перемещений или перемещений, сдвинутых по фазе на 90°. Ее можно определить, замерив ширину полосы частот, соответствующую пику динамической податливости, сдвинутой на 90° по фазе. Податливость а = Wp/F является комплексной величиной  [c.159]

Рассмотрим схему эксперимента, а также, кривые зависимостей динамической податливости и фазового угла от частоты (рис. 4.30). На рисунке указаны размеры образца, изготовленного из материала 3M-ISD-110, значения комплексного модуля приведены на рис. 7.17. Динамические перемещения тела с массой т = 5,355 кг измерялись с помощью акселерометра, колебания возбуждались с помощью удара, создаваемого силовым датчиком. С помощью быстрого преобразования Фурье находится податливость, измеряемая в метрах на ньютон. Из рис. 4.30 можно видеть, что ни k, ни т) нельзя найти ни методом амплитуд, ни методом определения ширины полосы резонанса, при любых значениях частот, включая резонансную. По  [c.192]

В рассмотрение введем комплексную величину (i o), модуль которой равен отношению Uo/Ff , а аргумент — фазовому сдвигу ф (в линейной системе Ua/F и ср не зависят от амплитуды Fq). Эта величина, рассматриваемая как функция частоты ш гармонического воздействия, называется динамической податливостью упругого тела.  [c.222]

Аналогично описывается зависимость от времени и температуры податливости при ползучести, если к телу ступенчато приложено напряжение о e t,T)/a= t,T). Механические свойства вязкоупругого тела называются динамическими, если механическое воздействие изменяется во времени по синусоидальному закону. Так, если вязкоупругое тело деформируется по синусоидальному закону е(со) с малой амплитудой, то ответное напряжение будет также синусоидальным, причем его амплитудное значение прямо пропорционально деформации, но с отставанием по фазе на угол б. Ответное напряжение выражается в виде комплексного числа о =<у + ia", так же как и соответствующий модуль М (а, Т)  [c.149]

Если вязкоупругое тело деформируется по гармоническому закону с частотой со, то возникающие напряжения будут иметь ту же частоту, что и деформации, но отличаться от последних по фазе и амплитуде. Введем понятие комплексного модуля Е (гсо) и комплексной податливости. Комплексный модуль записывается  [c.27]


Современные ЭЦВМ позволяют выполнить исследования колебаний механической системы практически любой сложности. Но изменение структуры модели требует разработки новых алгоритмов и программ расчета, поэтому в последние годы уделяется большое внимание исследованию общих закономерностей колебания сложных механических систем, не зависящих от их конкретной структуры. Наиболее полно эти вопросы освещаются в литературе по акустике, в особенности в работах Е. Скучика [1]. При этом вместо принятых в литературе по механике понятий динамической жесткости, податливости и гармонических коэффициентов влияния применяется терминология, установившаяся для описания переходных процессов в электрических цепях импеданс, сопротивление, проводимость и т. ц. Это связано с использованием получившего широкое распространение в последние годы математического аппарата теории автоматического регулирования и, в частности, с рассмотрением задач в комплексной области. Переход в комплексную область позволяет свести динамическую задачу для линейной системы при гармоническом возбуждении к квазистатической с комплексными коэффициентами, зависящими от частоты. После определения комплексных амплитуд сил и перемещений у, действующие силы и перемещения выражаются действительными частями произведений и  [c.7]

Алгоритмы рассмотренного метода пра1ктически совпадают с алгоритмами обычного метода динамических жесткостей и податливостей. Это следует отнести к достоинствам его, поскольку можно использовать известные результаты. Однако необходимо иметь в виду самосопряженность матриц ВДЖ н ВДП, а также комплексность амплитуд.  [c.51]

Если ввести в рассмотрение комплексную вынуждающую силу Е(I) — = F(Jв т н комплексное перемещен1Ю точки К ц = Цое , то динамическая податливость (ш)) окажется равной отношению комплексных амплитуд  [c.222]

В случае малого вязкого демпфирования ширина резонансного пика Дш при значении амплитуды I 0а 1 = 1 бл Imax/V непосредственно связана с тангенсом угла потерь, а именно имеет место равенство Дсо/(01 = 1 ф, что позволяет легко найти тангенс угла потерь при помощи динамических характеристик. Докажем, что эта связь оказывается приближенно верной в каждом резонансном состоянии для достаточно общих вязкоупругих характеристик, определяемых через зависящие от частоты комплексные податливости, почти независимо от типа рассматриваемой структуры. При этом предполагается только, что (i) tg p мал по сравнению с единицей (но не обязательно постоянен)  [c.169]

Типичные формы годографов комплексных функций WrM a) и Wrpim), гФр, показаны соответственно на рис. 22, а и б. На частотах й) — ki модули динамических податливостей принимают большие значения, обусловленные тем, что при этом 1-е слагаемое в (3.25) имеет порядок Увеличение динамических податливостей означает, что при гармоническом воздействии на систему, имеющем частоту = ki, малые по амплитуде силы могут вызвать перемещения большой амплитуды, т. е эти частоты являются для системы резонансными. С другой стороны, существуют такие частоты со = на которых модуль динамической но-  [c.47]


Смотреть страницы где упоминается термин Комплексная амплитуда податливость : [c.266]    [c.133]    [c.8]   
Введение в теорию механических колебаний (0) -- [ c.133 ]



ПОИСК



Амплитуда

Комплексная амплитуда

Податливость



© 2025 Mash-xxl.info Реклама на сайте