Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерий максимальной деформации растяжения

Критерий максимальных деформаций растяжения предполагает, что для каждого конкретного материала максимальная деформация зарождения откола зависит от временных характеристик деформирования. Рис 5.5, иллюстрирующий эту зависимость, показывает, что с уменьшением характерного времени действия растягивающего  [c.140]

Критерий максимальной деформации растяжения. По этому критерию условие прочности принимают в виде  [c.592]

Существует и такая точка зрения на вторую теорию, что в критерий предельного состояния должна вноситься лишь опасная относительная деформация растяжения и проверка соответственно производиться лишь по максимальной деформации растяжения.  [c.529]


Критерий прочности по максимальной деформации растяжения, выраженный в напряжениях, с учетом соотношений (24) и (25) будет  [c.552]

При выполнении условия (3.4) со знаком равенства нагрузка Р достигает максимального значения и происходит спонтанное удлинение стержня. В этом смысле его равновесие неустойчиво, и если речь идет о некотором элементе конструкции, то его несущая способность исчерпана. Но для технологических процессов характерно, что обычно заданы не нагрузки на заготовку, а кинематика пластического деформирования. Технологические машины за редким исключением способны работать как при возрастающей, так и при понижающейся нагрузке. В связи с этим при исследовании технологических процессов интересуются не пластической неустойчивостью, выражающейся в том, что малое изменение нагрузки вызывает большое изменение деформации, а неустойчивостью, приводящей к недопустимому изменению геометрической формы заготовки (например, если прямой при устойчивом деформировании стержень после потери устойчивости становится кривым если у растягиваемого листа появляется локальное утонение и т. д.). В дальнейшем рассматривается локализация пластической деформации. В связи с этим важно выяснить, насколько надежно предсказывает рассматриваемые критерии неустойчивость именно этого типа. Проведенный анализ растяжения стержня имеет для нас смысл, лишь поскольку согласно наблюдениям в этом случае оба типа неустойчивости оказываются совмещенными. Объясняется это следующим.  [c.106]

Общие понятия. Классические теории предельных состояний (критерии прочности) для изотропных тел формулируются по-разному в зависимости от физической природы опасного состояния. При этом хрупкое разрущение связывается обычно с величиной нормальных напряжений или линейных деформаций. В теориях пластичности рассматриваются в первую очередь касательные напряжения (максимальные, октаэдрические или осред-ненные). Для металлов последнее обстоятельство оправдано сдвиговым характером пластической деформации, экспериментально обнаруженным, например, при растяжении образцов изотропной малоуглеродистой стали.  [c.138]

Наиболее часто начальный угол распространения трещины 0 определяют по <те-критерию [67, 118, 143] (трещина растет в проходящей через ее вершину плоскости действия максимальных окружных растягивающих напряжений <Тв). Широкое распространение нашли также энергетические критерии 5-критерий [168, 169] (рост трещины совпадает с направлением минимальной энергии деформации) 5сг-критерий [4], учитывающий лишь энергию формоизменения 0 -критерий [176], объединяющий 0е- и S-критерии комбинированный 7-критерий [177]. В работе [24] на примере растяжения — сжатия пластин и дисков с трещинами проведен анализ этих критериев относительно их прогнозирующих возможностей. Ниже помещены критериальные уравнения, определяющие начальное направление развития трещины под углом  [c.44]


Цель этих исследований состояла в том, чтобы выяснить, возможно ли рассчитать несущую способность (определить предельные номинальные напряжения для заданного уровня деформаций) образцов с концентраторами напряжения при изгибе при многоцикловом нагружении, зная диаграммы циклического деформирования и кривые усталости в условиях линейного однородного напряженного состояния (растяжения — сжатия) и приняв в качестве критерия разрушения при одном и том же числе циклов нагружения равенство максимальных циклических деформаций при растяжении — сжатии и изгибе образцов с концентраторами.  [c.263]

Сопротивление раздиру. Это испытание проводят на обычных разрывных машинах, применяя образцы пленки особой формы при скорости растяжения, 50 мм/мин или растягивая со скоростью 250 мм/мин предварительно надрезанную полоску пленки установленных размеров. Особенностью этих испытаний является то, что участок максимальной концентрации напряжения задается выбором формы образца йли нанесением надреза. При этом деформация в крыльях образца пренебрежимо мала, и критерием прочности при раздире служит энергия, необходимая для образования единицы площади новой поверхности. Ее величину W находят по формуле  [c.120]

Технические критерии статического и усталостного разрушения при сложном напряженном состоянии, применяемые обычно в расчетах на прочность / — IV теории прочности и их обобщения [6]), имеют дело только с макроскопическими напряжениями и деформациями (I рода). Последние являются усредненными величинами, определяемыми для всего поликристаллического образца в целом, В частности, критерием разрушения по первой теории прочности служит равенство максимального главного напряжения его критическому значению Рр, равному сопротивлению разрушению при простом одноосном растяжении поликристаллического образца. Действительная картина разрушения сложнее. Задолго до полного разрушения всего образца, при напряжениях, значительно меньших разрушающего, в нем появляется множество микроскопических трещин, свидетельствующих о разрушении отдельных элементов структуры. Это явление легко понять, если учесть, что макроскопические напряжения являются средними по отношению к структурным или микроскопическим напряжениям (П рода), которые могут быть как меньше, так и значительно больше макроскопических напряжений в любом данном сечении тела. Максимальные из числа микроскопических растягивающих напряжений, достигая местной (локальной) прочности материала, приводят к образованию микротрещин. В связи с этим очевидно, что расчет по обычным техническим критериям прочности противоречив, поскольку в основу его положено предположение, по которому разрушение вызывается средними (макроскопическими), а не максимальными (из числа микроскопических) напряжениями. Дело обстоит точно так же, как если бы расчет на прочность пластинки с отверстием производился по номинальным напряжениям, без учета концентрации напряжений у отверстия и независимо от формы и размеров отверстия. В структуре технических материалов (сталей, чугунов, бетона и даже стекла) роль концентраторов напряжений принадлежит особенностям микроскопической структуры (кристаллитам, неметаллическим включе-50  [c.50]

Предел прочности при растяжении. Предел прочности композиционного материала волокно борсик диаметром 150 мкм — алюминий 6061—ТВ в зависимости от угла испытания показан на рис. 25. Видно, что критерий максимальной энергии деформации позволяет описать поведение материала во всем диапазоне углов к оси приложения нагрузки. Другие критерии, такие, как критерий максимальной деформации или максимального напряжения, менее удовлетворительны, особенно при малых углах, когда наблюдается уменьшение прочности с увеличением угла между осью приложения нагрузки и направлением укладки волокон. Выражения энергии деформации хорошо согласуются с экспериментальными данными как для композиционных материалов, имеющих при разрушении расщепленные волокна, так и для сочетаний-матрица — волокно, обнаруживающих другие виды разрушенир [86, 53, 89]. Такая универсальность применения безотносительс -к типу разрушения сделала метод максимальной энергии деформа ции очень полезным для описания поведения боралюминия.  [c.472]


Рис. 11. Сравнение критериев прочности (энергетического — сплошная пиния, максимальных напряжений — штриховая линия, максимальных деформаций — штрих-пунктирная) для эпоксидного стек-лоцластика(При одноосном растяжении [17] Рис. 11. Сравнение <a href="/info/5917">критериев прочности</a> (энергетического — сплошная пиния, <a href="/info/25418">максимальных напряжений</a> — <a href="/info/1024">штриховая линия</a>, максимальных деформаций — штрих-пунктирная) для эпоксидного стек-лоцластика(При одноосном растяжении [17]
Однако установлено, что разрушение материала является не просто функцией напряжения, деформации или энергетического состояния. Поэтому область применимости каждой из этих теорий зависит от многих факторов, таких как, например, напряженное состояние, скорость деформации, предыстория напряженно-деформированного состояния и анизотропия свойств и др. Дорн (1948 г.), например, отметил, что некоторые металлы типа высокопрочных алюминиевых сплавов, по-видимому, разрушаются в соответствии с законом максимальных касательных напряжений для состояния двухосного растяжения или смешанного плосконапряженного состояния. Литой чугун ведет себя в соответствии с критерием максимальных нормальных или срезываюш их напряжений в зависимости от вида двухосного напряженного состояния (т. е. знаков главных напряжений).  [c.317]

Равенства (7) — (10) выражают напряжения (деформации) в главных осях каждого слоя через результирующее усилие М, воздействующее на слоистый материал. С учетом этих напряжений в критерии разрушения можно оценить прочность каждого слоя материала и определить запасы прочности, соответствующие принятому критерию. Если критерий разрушения ч )ормулируется через максимально допустимые напряжения (деформации), то отрицательный запас прочности некоторого слоя свидетельствует о нарушении сплошности материала и не обязательно соответствует его разрушению. Разрушение определяется предельными напряжениями для слоя. Нарушение сплошности материала связано с образованием трещин в связующем при растяжении слоя в поперечном направлении и приводит к изменению его термомеханических характеристик.  [c.86]

При определении методами теории упругости напряжений, размеров площадки контакта и деформаций деталей подшипников материал предполагается идеально упругим, изотропным, однородным. Критерий текучести нигде не нарушается и, следовательно, пластические деформации отсутствуют. В соответствии с критерием текучести, например Треска -Сен-Венана, максимальные касательные напряжения в любой точке не должны достигать значения пластической постоянной, т.е. Тщах < А = Сто / 2, где Сто - напряжение, соответствующее началу пластического деформирования при испытаниях на одноосное растяжение или сжатие.  [c.346]

Длительное разрушение, которому предшествует существенная остаточная деформация, происходит в соответствии с критерием интенсивности напряжений или максимального касательного напряжения [6, 40]. Результаты испытаний на длительную прочность, проведенных на сложнолегированном сплаве ЭП238ВД при нагружении различными сочетаниями растяжения и кручения, приведены на рис. 2.4. Испытания проводили при Т = 850° С на круглых трубчатых образцах с наружным диаметром 16 мм и толщиной стенки 0,5 мм.  [c.29]


Смотреть страницы где упоминается термин Критерий максимальной деформации растяжения : [c.592]    [c.157]    [c.142]    [c.94]    [c.190]    [c.432]   
Расчет на прочность деталей машин Издание 4 (1993) -- [ c.0 ]



ПОИСК



Деформация растяжения

Критерий длительной и малоцикловой максимальной деформации растяжения



© 2025 Mash-xxl.info Реклама на сайте