Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сверхпроводимость сильная связь

Материалы первого рода теряют свойства сверхпроводимости уже при слабых магнитных полях и относительно небольших плотностях тока. Сверхпроводники второго рода сохраняют сверхпроводящее состояние вплоть до высоких значений напряженности магнитного поля. Что касается величины критической плотности тока, то она тесно связана с наличием неоднородностей в структуре материала и примесей. Если таких искажений и примесей нет, то сверхпроводники второго рода относят к мягким (идеальным), при сильных магнитных полях они допускают небольшие плотности тока, Сверхпроводники второго рода с неоднородностями  [c.277]


Рассматривается также возможность использования явления снижения электрического сопротивления проводника по мере уменьшения его температуры с помощью искусственного охлаждения. Это явление ие связано со сверхпроводимостью, описанной выше. Оно просто объясняется тем, что с понижением температуры металла электрически заряженные частицы реже сталкиваются с атомами кристаллической решетки, поскольку чем ниже температура, тем меньше амплитуда колебательных движений атомов. Изменение сопротивления может быть очень резким, как видно из рис. 9.8, где представлена кривая зависимости сопротивления чистого алюминия от температуры. Стрелками обозначены точки кипения гелия, водорода и азота. При температуре около 40 К и ниже сопротивление сильно зависит от наличия примесей и может быть на порядок больше, чем показано.  [c.236]

Сверхтекучая модель предсказывает разрушение парных корреляций в ядре при достаточно больших спинах (/ 1). Это явление, аналогичное разрушению сверхпроводимости сильным магн, полем, проявляется в скачкообразном возрастании момента инерции J в данной вращат. полосе при нек-ром критич. значении спина /,р 60. Отчётливо это пока не обнаружено, однако при изучении высокоспиновых состояний ядер (/<20—30), возбуждаемых в реакциях с тяжёлыми нонами, наблюдалось немонотонное изменение У при возрастании / (обратный загиб). В районе значений спина /fl( 12—16) увеличение угл. момента / приводит не к увеличению угл. скорости вращения to, а к её уменьшению вследствие того, что резко увеличивается момент инерции ядра J. Это изменение связано с тем, что вблизи точки Ig происходит пересечение основной вращат. полосы ядра (/ = О ) с возбуждённой полосой, построенной на внутр. состоянии ядра, в к-ром одна из куперовских пар на нейтронной орбите разрушается и спины этих двух нуклонов уже не компенсируют друг друга, а оба выстраиваются параллельно вращат. моменту. При этом меняется деформация ядра, увеличивается момент инерции, изменяются магн. характеристики ядра.  [c.689]

Глубина проникновения П 353. См. также Сверхпроводимость Уравнение Лондонов Голые ионы II142 Гранецентрированная кубическая решетка Бравэ I 81, 82 зоны Бриллюэна выше первой 1169 р-зоны в методе сильной связи 1193 s-зоны в методе сильной связи 1186—188 и гексагональная плотноупакованная структура 190, 91 и плотная упаковка сфер 191 координационное число I 83 основные векторы 181  [c.405]

Иа участие фононов в возникновении сверхпроводимости указывает изотопический эффект. Данные табл. 7.4 также свидетельствуют о связи сверхпроводимости с электрон-фононным взаимодействием. Чем сильнее в нормальном металле электрон-фонон-ное взаимодействие, тем меньше его проводимость. Так, например, свинец является плохим проводником, но в то же время из-за сильного электрон-фононного взаимодействия он обладает высокой (для чистых металлов) критической температурой. Благородные металлы являются прекрасными проводниками. У них слабое элек-трон-фононное взаимодействие. Они не переходят в сверхпроводящее состояние даже при самых низких температурах, достивнутых в настоящее время.  [c.268]


Изотонический эффект свидетельствует о том, что сверхпроводимость обусловлена взаимодействием между электронами и колебаниями решетки, а теория показывает, что, когда взаимодействие электрон—решетка велико, можно ожидать заметного изменения электронных волновых функций. Для рассмотрения сильных взаимодействий необходимы более точные математические методы. Теория промежуточттой связи Томонага с успехом применялась к задаче нолярона [150—152] (электрона, движущегося в ионном кристалле), п можно надеяться, что такие методы могут быть применимы к электронам в металле.  [c.777]

Аналогичное соотношение, но с другим показателем степени действует и для частиц А1. При увеличении магнитного поля монотонно уменьшается и, наконец, достигает значения для массивного ( лова. Отсутствие максимума, наблюдаемого на кривой Т Н) для частиц А1 при низких магнитных полях, объясняли более сильной спин-орбитальной связью в частицах Sn. Критическое поле для частиц Sn диаметром 150 А имеет значение 38 кЭ и спадает с уменьшением размера частиц по закону в соответствии с теорией Де Жена и Тинкхэма. Чтобы подавить сверхпроводимость и извлечь в чистом виде квантовый размерный эффект, необходимо приложить полеЯ Я . Однако вплоть до Я 30кЭ аномалии не наблюдались, ибо таким полем можно расстроить сверхпроводимость только в довольно крупных частицах, где квантовый размерный эффект трудно обнаружить.  [c.278]

После создания микроскопич. теории сверхпроводимости выяснилось, что в действительности ток определяется значением А не только в той же точке, а в нек-рой области с размерами = Hv lkT (v — скорость электронов па поверхности Ферми, — темп-ра сверхпроводящего перехода). Поэтому связь J с А можно считать локальной только в том случае, если эти величины мало меняются па расстоянии т. е. если б > (,. Это условие есть, т. о., условие применимости Л. у. Следует иметь в виду, что в большинстве сверхпроводников выполняется обратное неравенство, т. е. имеет место т. н. пиппардовский предельный случай (см. Пиппарда уравнение). Вблизи точки фазового перехода в достаточно сильных полях Л. у. также неприменимы и должны быть заменены Гинзбурга — Ландау уравнениями [I].  [c.16]

В связи с этим следует отметить, что основой идеи Литла была не одномерность, которая, как уже отмечено, только мешает сверхпроводимости, а наличие сильно поляризующихся боковых групп, окружавших основную нить толстой шубой . В существующих ныне молекулярных квазиодномерных кристаллах анизотропия проводимости происходит не из-за больших расстояний между нитями, а из-за большой анизотропии электронных волновых функций, которые сильно перекрываются вдоль нитей и слабо—в поперечном направлении. Следовательно, в соединениях такого типа просто нет места для сильно поляризующейся шубы .  [c.329]

Сверхпроводимость веществ при низких температурах, открытая Камерлинг-Оннесом в 1911 г., в настоящее время начинает использоваться для создания электромагнитных систем с сильными магнитными полями. Проблемы создания магнитогидродинамического (МГД) генератора энергии находятся в неразрывной связи с применением сверхпроводящих магнитов. С использованием явления сверхпроводимости разработаны опытпые образцы весьма компактных и высокоэффективных электрических машин. Исследуются вопросы применения сверхпроводимости в линиях электропередач  [c.7]

Технические применения Н. т. Одна из гл. областей применения Н. т, в технике — разделение газов. Производство кислорода и азота в больших кол-вах основано на сжижении воздуха с последующим разделением его в ректификац. колоннах. Н. т. используют для получения высокого вакуума методом адсорбции на активированном угле или цеолите (адсорбционный насос) или непосредственно конденсации на металлич. стенках сосуда с хладагентом (крионасос). Охлаждение до темп-р жидкого воздуха или азота находит применение в медицине (лечение мозговых опухолей, кожных, урологич. и др. заболеваний, консервация живых тканей). Широко применяются Н. т. в электронике и радиотехнике для подавления аппаратурных шумов. Др, направление технич, применения И. т. связано с использованием сверхпроводимости. Здесь наиболее ваншую роль играет создание сильных магн. полей ( -10 кЭ), необходимых для ускорителей заряженных частиц, трековых приборов пузырьковая камера и др.), магнитогидродинамических генераторов и многообразных лабораторных исследований (см. Магнит сверхпроводящий, Сверхпроводящий магнитометр).  [c.469]



Смотреть страницы где упоминается термин Сверхпроводимость сильная связь : [c.454]    [c.28]    [c.139]    [c.244]    [c.184]    [c.574]    [c.8]   
Физика твердого тела Т.2 (0) -- [ c.358 , c.360 ]



ПОИСК



Сверхпроводимость



© 2025 Mash-xxl.info Реклама на сайте