Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пограничный слой гидродинамический отрыв

На рис. 27.7 [81] представлены кривые изменения локального числа Нуссельта при поперечном обтекании цилиндра в зависимости от угла ф для различных чисел Рейнольдса в условиях постоянного теплового потока по поверхности. Из рисунка видно, что число Нуссельта уменьшается, начиная от передней критической точки, достигает минимума при некотором угле ф и далее вниз по потоку резко возрастает. В передней критической точке толщина ламинарного пограничного слоя мала и поэтому локальные коэффициенты теплоотдачи и числа Нуссельта велики. По мере удаления от критической точки вниз по потоку растет толщина пограничного слоя, вместе с ней растет его тепловое сопротивление и коэффициент теплоотдачи уменьшается. В зоне отрыва пограничного слоя коэффициент теплоотдачи вновь резко возрастает. В этой области происходят весьма сложные и еще до конца не ясные явления. Здесь, видимо, происходит периодический процесс — утолщение пограничного слоя, его отрыв и унос оторвавшейся массы жидкости вниз по потоку. Этот периодический процесс непрерывно повторяется. Можно ожидать, что чем больше таких процессов происходит в единицу времени, тем интенсивнее теплоотдача, так как в момент отрыва слоя тепловое сопротивление в этой зоне значительно уменьшается. Очевидно, что применить гидродинамическую теорию теплообмена (см. гл. 24) в этой области невозможно. На интенсивность теплоотдачи в зоне отрыва влияют число Рейнольдса, форма и качество поверхности (шероховатость) обтекаемого тела, физические константы жидкости.  [c.321]


Вследствие распространения теплового пограничного слоя при Рг 1 далеко за пределы слоя гидродинамического отрыв послед-  [c.245]

Здесь, видимо, происходит периодический процесс — утолщения пограничного слоя, его отрыв и унос оторвавшейся массы жидкости вниз по потоку. Этот периодический процесс непрерывно повторяется. Можно ожидать, что чем больше таких процессов происходит в единицу времени, тем интенсивнее теплоотдача, так как в момент отрыва слоя тепловое сопротивление в этой зоне значительно уменьшается. Очевидно, что применить гидродинамическую теорию теплообмена (гл. VII) в этой области невозможно. На интенсивность теплоотдачи в зоне отрыва влияют число Рейнольдса, форма и качество поверхности (шероховатость) обтекаемого тела, физические константы жидкости.  [c.213]

Исходя из отличия гидродинамических пристенных условий при внешнем и внутреннем обтекании поверхности нагрева, можно также сделать вывод, что рекомендации относительно необходимой чистоты теплоносителя, полученные при изучении теплоотдачи в трубе [26], могут считаться верхним пределом для поперечного обтекания, так как в этом случае отрыв пограничного слоя способствует уменьшению высаживания взвешенных в потоке окислов на значительной части теплоотдающей поверхности.  [c.155]

В технических приложениях мы чаще всего сталкиваемся с задачами теплообмена, в которых происходит не изолированное развитие теплового пограничного слоя, а совместное развитие гидродинамического и теплового пограничных слоев. В литературе имеется несколько работ, посвященных решению этой задачи. Решения проводились преимущественно интегральными методами, так как в принципе эта задача подобна задаче теплообмена при развитии турбулентного пограничного слоя на наружной поверхности тела. Однако первая задача дополнительно осложняется тем, что на развитие турбулентного пограничного слоя сильно влияют условия на входе в трубу. Если вход в трубу выполнен в виде хорошо спрофилированного сопла, формирующего профиль скорости во входном сечении, близкий к однородному, и если на входе имеется турбулизатор пограничного слоя, то развитие полей скорости и температуры в начальном участке близко к расчетному. Такие условия на входе специально создаются в лаборатории, а на практике встречаются довольно редко. Если не проводить искусственную турбулизацию пограничного слоя, на стенке будет развиваться ламинарный пограничный слой. В зависимости от числа Рейнольдса и степени турбулентности главного потока ламинарный пограничный слой может стать стабилизированным прежде, чем произойдет переход к турбулентному пограничному слою. В промышленных теплообменниках вход в трубу выполнен обычно далеко не в виде сопла. Значительно чаще вход представляет собой внезапное сужение. Во многих теплообменниках перед входом в трубки имеются колена. В любом случае на входе происходят отрыв потока и интенсивное образование вихрей, распространяющихся вниз по течению. Это значительно интенсифицирует теплоотдачу по сравнению с теплоотдачей к развивающемуся турбулентному пограничному слою, когда турбулентные вихри образуются только на стенке трубы.  [c.235]


При поперечном обтекании круглого цилиндра и при обтекании шара на передней части этих тел образуется ламинарный пограничный слой (по крайней мере, при достаточно низких числах Рейнольдса, когда переход к турбулентному пограничному слою не происходит). Расчет местной плотности теплового потока в окрестности критической точки и на лобовой поверхности тел выполняется рассмотренными методами. Однако в сечении цилиндра или шара, расположенном несколько выше по потоку, чем миделево, происходит отрыв ламинарного пограничного слоя (отрыв турбулентного пограничного слоя происходит несколько ниже миделева сечения). После отрыва пограничного слоя на поверхности тела наблюдаются колебания местного коэффициента теплоотдачи, соответствующие сложному вихревому характеру течения с уносом вихрей от поверхности в гидродинамический след.  [c.274]

Простое преобразование координат, с помощью которого осуществляется переход от движущегося тела к неподвижному, невозможно, если имеется ускорение в относительном движении тела и основной массы жидкости, поскольку гидродинамические явления зависят от ускорения. В этом случае возникают дополнительные массовые силы и различные явления, происходящие в реальном течении, например, нарастание пограничного слоя и его отрыв, зависят от времени.  [c.652]

Гидродинамические процессы, протекаюш ие при поперечном омывании цилиндра, включают в себя практически все классические задачи гидродинамики. Здесь и развитие ламинарного пограничного слоя в условиях отрицательного градиента давления (в лобовой части цилиндра), особенности течения в критических точках (<р=0, 180°), влияние внешней турбулентности на развитие и. характеристики пограничных слоев, переход ламинарного пограничного слоя в турбулентный, отрыв ламинарного и турбулентного пограничных слоев (при ср=80°, а также 135° — для сверхкритического обтекания), течение в зонах отрыва и циркуляционных зонах, возникновение возвратных пограничных слоев в задней части цилиндра и т. д. По указанным вопросам выполнено большое количество теоретических и экспериментальных работ [1]. Ниже приводятся основные расчетные зависимости для различных участков цилиндра.  [c.4]

Бернулли, так как дпссппации энергии не происходи-]. Это давление распространяется и на всю толщину пограничного слоя. По длине слоя между О н В имеется минимум давления, а от него вниз по потоку существует положительный градиент даЕ-ления, который приводит к тому, что остановившаяся частица вначале перемещается в пограничном слое В сторону стенки, а затем начинает двигаться обратно. Пограничный слой разбухает и отрывается. Отрыв пограничного слоя резко усложняет гидродинамическую картину обтекания цилиндра, а следовательно, и теплоотдачу.  [c.193]

Процесс возникновения дискретной фазы в межлопаточных каналах решетки носит флуктуационный характер и сопровождается появлением конденсационной турбулентности, интенсивность которой значительна. Хорошо известно, что в суживающихся каналах большой конфузорности происходит частичное или полное вырождение гидродинамической турбулентности в пограничных слоях, т. е. имеет место ламинаризация слоя. Процесс ламннари-зации ( обратного перехода) в пограничных слоях особенно интенсивен при околозвуковых скоростях, когда продольные отрицательные градиенты давления достигают максимальных значений. Ламинаризированный слой отрывается местными адиабатными скачками, и этот процесс сопровождается появлением жидкой фазы и турбулизацией слоя (генерируется конденсационная турбулентность). В результате отрыв слоя ликвидируется, вновь происходит ламинаризация слоя, появляется отрыв и т. д. Б соответствии с перемещениями зоны отрыва происходят перемещения скачка уплотнения по спинке профиля в косом срезе, что вызывает пульсацию термодинамических параметров — давления и температуры 48, 52, 53, 124]. Механизм генерации пульсаций параметров при конденсации в сопловых и рабочих решетках действует и при дозвуковых скоростях и вызывает опасные возмущающие силы. Таким образом, переход в зону Вильсона сопровождается специфическими нестационарными явлениями, в основе которых лежат флуктуационный механизм возникновения жидкой фазы и генерации конденсационной нестационарности, периодические отрывы пограничного слоя. В тех случаях, когда частота процесса конденсационной нестационарности близка или кратна частоте волн, возникающих при взаимодействии решеток, амплитуда пульсаций давлений (и температур) резко возрастает—имеет место резонанс и дополнительные возмущающие силы достигают опасного предела.  [c.192]


Привлекательность использования МГД эффектов для управления газодинамическим течением связана с возможностью целенаправленно изменять величину и направление МГД силы воздействием на поток магнитного и электрического полей. Однако при этом происходит перестройка всего течения, возникают зоны с большим положительным градиентом давления на стенках канала и отрыв пограничного слоя. Поэтому в 1960-70-х гг. исследование МГД пограничных слоев стало актуальной задачей. В ЛАБОРАТОРИИ получены основополагающие результаты в указанном направлении. А. Б. Ватажиным ([21 и Глава 12.2) рассмотрено течение в плоском диффузоре при наличии магнитного поля, создаваемого током, протекающим в вершине диффузора перпендикулярно плоскости течения. Диффузорное течение несжимаемой жидкости характеризуется наличием положительного градиента давления, приводящего при достаточно больших числах Рейнольдса или углах раскрытия диффузора к возникновению обратного гидродинамического течения. Магнитное поле позволяет предотвращать развитие таких течений.  [c.518]


Смотреть страницы где упоминается термин Пограничный слой гидродинамический отрыв : [c.194]    [c.321]    [c.380]    [c.419]    [c.212]    [c.193]    [c.45]   
Теплопередача Изд.3 (1975) -- [ c.222 ]

Теплопередача (1965) -- [ c.210 ]



ПОИСК



Гидродинамический пограничной сло

Да гидродинамическое

Отрыв

Отрыв в пограничном слое (см. Пограничный слой, отрыв)

Отрыв пограничного слоя

Пограничный слой гидродинамически

Пограничный слой гидродинамический

Слой гидродинамический



© 2025 Mash-xxl.info Реклама на сайте