Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Момент количества движения электронно-колебательный, в линейных молекулах

Если для линейной молекулы Х Уз существует два или несколько вырожденных колебаний, и все они возбуждаются одновременно, то можно определить точно только квантовое число L результирующего колебательного момента количества движения относительно оси. Индивидуальные моменты количества движения определяются лишь приближенно (аналогично орбитальным моментам электронов в двухатомной молекуле). Соответственно этому выражение (2,281) дает приближенное значение энергии. Однако оно не может дать расщепления уровней с заданным значением ожидаемого согласно теории групп (см. табл. 33). Так, например, при однократном возбуждении в молекуле Х У двух вырожденных колебаний V4 и Vj (см. фиг. 64, а), т. е. ири Vi = l, v — 1 и /4 = 1, /5 = 1, уравнение (2,281) дает только одно значение энергии, в то время как, согласно табл. 33, получаются три состояния St Sa И Д . В приближении (2,281) эти три состояния вырождены между собой, но учет более тонкого взаимодействия колебаний приведет к их расщеплению (см. также следующий параграф).  [c.231]


Так как основным электронным состоянием всех известных линейных многоатомных молекул является состояние И, нам не нужно рассматривать влияние на вращательно-колебательный спектр электронного момента количества движения Л. Роль электронного момента играет колебательный момент количества движения I, и поэтому структура инфракрасных полос линейных многоатомных молекул во всех отношениях подобна структуре соответствующих электронных полос двухатомных молекул.  [c.409]

Ф II г. 3. Колебательные уровни деформационных колебаний и значения ( ) результирующего электронно-колебательного момента количества движения, включающего спин, в электронном состоянии линейной молекулы с большим спиновым расщеплением.  [c.32]

В свободной молекуле полный момент количества движения относительно ОСИ симметрии К к 2л)], конечно, должен быть целым, а следовательно, всегда существует определенное значение вращательного момента количества движения, компенсирующее нецелую величину электронного момента. [В линейной молекуле, где невозможно вращение вокруг оси симметрии, электронный (орбитальный) момент должен быть целым и равным Л (/г/2я).] Возбуждение невырожденных колебаний не влияет на момент количества движения относительно оси симметрии, но вырожденные колебания вносят колебательный момент количества движения относительно оси симметрии. Как указывалось ранее ([23], стр. 433), при однократном возбуждении колебания V колебательный момент количества движения равен  [c.67]

Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]


В случае многоатомной молекулы egJJ зависит от к независимых относит, координат ядер к равно числу колебат. степеней свободы для линейной молекулы к — ЗN —- 6, для нелинейной к = , Ш — 5, гдо N — число атомов в молекуле). Равновесную конфигурацию ядер для данного устойчивого электронного состояния молекулы определяет совокупность к равновесных значений р. Около положений равновесия происходят более сложные, чем в случае двухатомной молекулы, малые колебания (см. Нормальные колебания молекул). Усложняется и вращат. движение, причем встает вопрос о правильном разделении движения ядер на колебательное и вращательное. Оказывается, что такое разделение получается из условия равенства нулю при малых колебаниях момента количества движения, возникающего для многоатомной молекулы вследствие колебаний (в двухатомной молекуле ядра колеблются вдоль оси молекулы и такой момент не возникает).  [c.290]

Вращательное квантовое число К соответствует моменту количества движения К относительно оси волчка, равному но величине К h 2n). Это компонента полпого момента количества движения J. В то время как в линейных молекулах величина К может отличаться от нуля только при наличии электронного или колебательного момента количества движения, здесь К может отличаться от нуля и при их отсутствии, а это значит, что чистое (жесткое) вращение вокруг оси волчка может происходить и без электронного и колебательного движений. Ио величина К может учитывать влияние и этих движений (см. ниже). Следует заметить, что всегда J K.  [c.85]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]


Смотреть страницы где упоминается термин Момент количества движения электронно-колебательный, в линейных молекулах : [c.406]    [c.79]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.31 ]



ПОИСК



Движение колебательное

Движение электронное

Колебательные

Количество движения

Линейные молекулы

Линейный момент

Момент количеств движения

Момент количества движени

Момент количества движения колебательный, в линейных молекулах

Момент количества движения электронный

Электронные для линейных молекул



© 2025 Mash-xxl.info Реклама на сайте