Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Измерение внутреннего сопротивления

Рис. 118. Схема установки для изучения влияния площади анода и катода на модель I — 6 - электроды 7 — сосуд 81 — 83 — переключатели 9 — мост для измерения внутреннего сопротивления 10 — гальванометр 11 — шунт гальванометра 12 — потенциометр 13 — промежуточный сосуд 14 — каломельный полуэлемент Рис. 118. Схема установки для изучения влияния площади анода и катода на модель I — 6 - электроды 7 — сосуд 81 — 83 — переключатели 9 — мост для измерения внутреннего сопротивления 10 — гальванометр 11 — шунт гальванометра 12 — потенциометр 13 — промежуточный сосуд 14 — каломельный полуэлемент

Рис. П. 10. Схема измерения внутреннего сопротивления микрофона Рис. П. 10. Схема измерения внутреннего сопротивления микрофона
Для обеспечения точности измерения внутреннее сопротивление вольтметра должно быть больше сопротивления зонда не менее чем в 50 раз. Для этих целей  [c.109]

Измерение внутреннего сопротивления микрофона (рис. 12.10). Внутреннее сопротивление измеряют, например, путем изменения величины нагрузочного активного сопротивления 7. Сопротивление нагрузки, при котором получается  [c.303]

Рис. 1-9. Образец диэлектрика с электродами для измерения внутреннего сопротивления по ГОСТ 6433-52 отдельно показан электрод. Рис. 1-9. Образец диэлектрика с электродами для измерения внутреннего сопротивления по ГОСТ 6433-52 отдельно показан электрод.
При точной компенсации э. д. с. во время измерения ток в цепи должен быть равен нулю, но так как полное равновесие не всегда бывает достигнуто, некоторый ток может протекать через элемент в момент замыкания контакта. Это не особенно существенно для элементов большой емкости, но важно для небольших элементов или для элементов с высоким внутренним сопротивлением. В последнем случае необходимо использовать высокочувствительные гальванометры. Например, электронные гальванометры, используемые для измерения pH с помощью стеклянного электрода, имеют входное сопротивление около 10 Ом и выше, что обеспечивает протекание ток порядка 10" А при разности потенциалов 1 В. Такой ток недостаточен для поляризации (то есть заметного изменения э. д. с.) элемента.  [c.31]

Последовательно с вольтметром, внутреннее сопротивление которого R,, включен дополнительный резистор с электрическим сопротивлением Дд, в п раз большим сопротивления вольтметра. Во сколько раз при этом расширились пределы измерения напряжения вольтметром  [c.208]

Если вольтметр с внутренним сопротивлением предназначен для измерения напряжений до максимального значения то при включении последовательно с вольтметром дополнительного резистора с электрическим сопротивлением Лд (рис. 212) измеряемое напряжение и будет равно сумме напряжений С/д на дополнительном резисторе и на вольтметре  [c.208]


Свойства решетки твердого тела. Чтобы успешно интерпретировать результаты опытов, необходимо выбрать определенную теорию в качестве основы для сравнения с экспериментальными данными. Развитие теории электрического сопротивления протекало во многих отношениях аналогично развитию теории теплоемкости, т. е. теории внутренней энергии твердых тел. Основное различие состоит в том, что измерения электрического сопротивления обычно сопряжены со значительно меньшими трудностями, чем измерения теплоемкости. Однако теория электрического сопротивления гораздо сложнее теории теплоемкости ).  [c.186]

Следует заметить, что при измерении гальванометрическим прибором (милливольтметром) появляется методическая погрешность, обусловленная падением потенциала в измерительной цепи из-за протекания по ней электрического тока. Поэтому разность потенциалов на клеммах милливольтметра, которую измеряют и показывает прибор, не совпадает с измеряемой термо-ЭДС. Чтобы уменьшить эту погрешность до пренебрежимо малого значения, милливольтметры выпускаются с большим внутренним сопротивлением.  [c.175]

Таким образом, напряжение на зажимах милливольтметра всегда меньше термо-э.д.с. на значение падения напряжения во внешней цепи. В свою очередь, падение напряжения Ыаь тем меньше, чем больше внутреннее сопротивление милливольтметра. Поэтому для увеличения точности измерения термо-э.д.с.  [c.28]

Таким образом, измеренная милливольтметром разность потенциалов будет всегда меньше термо-ЭДС термопары на значение падения напряжения в цепи термопары кт. Чем больше сопротивление проводов термопары кт и сила тока I, тем больше погрешность. Для уменьшения этой погрешности стремятся выбирать внутреннее сопротивление милливольтметра наибольшим, а сопротивление проводов наименьшим. Однако полностью исключить погрешность таким способом невозможно. Учесть же ее не всегда бывает легко, так как сопротивление термопары Яг изменяется с температурой.  [c.97]

Измерение р, производится по схеме, показанной на рис. 5.2, 6. Высокое напряжение подается на ОЭ. Поверхностный ток протекает от внутренней кромки ОЭ — окружности с диаметром — по поверхности образца к кромке ИЭ — окружности с диаметром di- Можно принять, что длина участка, по которому протекает поверхностный ток, равна (d — di)/2, а ширина определяется средним диаметром d j, - (dj + di)/2 и равна я (d + d,)/2. Если измеренное поверхностное сопротивление равно R.,. то  [c.136]

Силу тока всегда лучше измерять при помощи схемы с нулевым сопротивлением, так как в этом случае моделируются условия работы короткозамкнутых пар, возникающих при эксплуатации котлов. В тех случаях, когда внутреннее сопротивление контактной пары значительно больше сопротивления измерительного прибора, а величина тока значительная, измерения можно производить, подключая  [c.144]

При измерениях напряжения прибор 1 вместо Uo измеряет Ui. Отклонение результата измерения (погрешность) уменьшается по мере уменьшения силы тока /] и соответствующего уменьшения угла наклона а. Вольтметры должны быть возможно более высокоомными. Обычные вольтметры магнитоэлектрической системы (с вращающейся рамкой) имеют внутренние сопротивления порядка нескольких десятков килоом на один вольт (/i=0,l мА) и для измерения потенциалов непригодны. Имеются приборы более высокого качества с соответствующим показателем около 1 МОм на I В (/> = 1 мкА). С их применением на практике можно измерять стационарные потенциалы однако время успокоения стрелки у них довольно велико (>1 с). Обычно для измерения потенциалов используют аналоговые показывающие вольтметры с электронным усилителем с входным сопротивлением порядка 10 —10 2 Ом. Время успокоения стрелки у них не превышает 1 с, а при электронном показании оно даже менее 1 мс.  [c.82]

При измерениях силы тока при Помощи прибора 2 вместо значения 1о Измеряется величина h- Здесь отклонение результата измерений (погрешность) уменьшается по мере уменьшения измеряемого напряжения Ui и соответственно увеличения угла наклона Р, т. е. с уменьшением внутреннего сопротивления. Это означает, что при измерениях силы тока прибор (амперметр) должен иметь возможно более Низкое внутреннее сопротивление, чтобы не повышалось суммарное сопротивление й цепи Тока и чтобы не изменялась измеряемая величина. Обычные приборы магнитоэлектрической системы имеют внутреннее сопротивление около 100 Ом на 1 мА (Уг=0,1 В) и вполне пригодны для измерений силы тока. Для меньших значений силы тока имеются и более высококачественные приборы с показателем 5 кОм на 1 мкА  [c.82]


В противоположность простым измерениям силы тока и потенциала при поляризационных измерениях, т. е. при снятии поляризационных кривых ток — потенциал, нужны активные системы с активными внешними схемами, имеющими переменную характеристику (см. рис. 2.3). Эти внешние схемы тоже должны быть возможно более жесткими, так чтобы все нестационарные значения располагались на известной характеристике — так называемой прямой сопротивления внешней схемы [1]. Для электрохимической защиты особый интерес представляют внешние схемы с круто поднимающимися прямыми сопротивления в диаграмме I U), т. е. с малыми внутренними сопротивлениями, поскольку такими схемами можно эффективно контролировать потенциал независимо от величины потребляемого тока. Обычные источники постоянного тока с высоким внутренним сопротивлением уступают таким схемам, поскольку изменения силы потребляемого тока вызывают и соответственно большие изменения напряжения (см. раздел 9). Для некоторых систем, например групп II и IV, согласно разделу 2.4, для защиты могут применяться только низкоомные преобразователи (см. раздел 20).  [c.83]

Вольтметры с усилителями часто имеют выход для подключения самопишущих измерительных приборов. Благодаря этому могут быть использованы также и самопишущие приборы с низким входным сопротивлением для регистрации результатов измерения с высоким сопротивлением источника. Высокоомные универсальные приборы, применяемые в электротехнике для измерения напряжений, токов и сопротивлений, тоже могут применяться для измерения потенциала. Универсальные приборы обычно имеют измерительный механизм магнитоэлектрической системы с вращающейся рамкой, подвешенной на ленточных растяжках. Они прочны, нечувствительны к действию повышенной температуры и имеют линейную шкалу. При времени успокоения стрелки не более 1 с, как требуется для измерения потенциалов, максимальное внутреннее сопротивление таких приборов составляет 100 кОм на 1 В. Поскольку сопротивление электродов сравнения большой площади обычно не превышает 1 кОм, с применением таких приборов возможны достаточно точные измерения потенциалов. Однако при измерениях потенциала в высокоомных песчаных грунтах или на мощеных мостовых (малая диафрагма) сопротивление электрода сравнения может значительно превышать 1 кОм. Погрешности измерения, получаемые в таких случаях при применении универсальных приборов, могут быть устранены с применением схемы, принцип которой показан на рис. 3.6 [9]. Параллельно измерительному прибору при помощи кнопочного выключателя S подключается сопротивление Ri, одно и то же для соответствующего диапазона измерений. При допущении, что внешнее сопротивление меньше внутреннего Ra[c.92]

Фильтры имеют постоянную времени x=R , которая увеличивает демпфирование измерительного прибора. Постоянная времени зависит от требуемой степени ослабления и от частоты переменного тока, оказывающего возмущающее влияние, но не от внутреннего сопротивления измерительного прибора. Постоянные времени экранирующих фильтров по порядку близки к постоянным времени электрохимической поляризации, так что погрещность при измерении потенциала отключения увеличивается. Поскольку при последовательном соединении ослабляющих фильтров их постоянные времени складываются а коэффициенты ослабления перемножаются, целесообразно вместо одного большого фильтра подключать последовательно несколько небольщих.  [c.100]

Измерение разности потенциалов между рельсами и землей (тюбингами) производится вольтметром с внутренним сопротивлением не менее 500 ом на 1 в шкалы и пределами измерений О 100 в или интегрирующими приборами.  [c.94]

Проверка исправности междурельсовых и междупутных соединителей производится измерением разности потенциалов между рельсовыми нитями одного и того же пути и между внешними нитями разных путей через каждые 600 м в местах установки соединителей. Для измерения используется вольтметр с внутренним сопротивлением не менее 10 ком на 1 в. В каждой проверяемой точке фиксируется 10 показаний вольтметра.  [c.98]

Исправность обходных соединителей на стрелках, крестовинах и т. п. — проверяется измерениями разности потенциалов между концами рельсов, к которым примыкают стрелки, крестовины и т. п. Измерения производятся милливольтметром с внутренним сопротивлением не менее 10 ком на 1 в. На каждом обходном соединителе снимается 10 показаний вольтметра.  [c.98]

Измерение разности потенциалов между рельсами и землей можно производить с помощью регистрирующих приборов со стрелочным отсчетом. Внутреннее сопротивление прибора должно быть не менее 10 ком на 1 в. В качестве измерительного электрода применяется стальной стержень диаметром не менее 15 мм. Электрод забивается в грунт на глубину 10—15 см. Минимальное расстояние пункта установки электрода от ближайшей нитки рельсов 20 м. Потенциал рельсов относительно земли измеряется через каждые 200 м пути и у мест присоединения отрицательных питающих линий  [c.98]

Измерения поляризационного потенциала стальных трубопроводов в контрольно-измерительных пунктах могут проводиться с помощью схемы, содержащей вольтметр с большим внутренним сопротивлением 5 и прерыватель тока 6 с накопительным конденсатором (рис. 18, 6). В отсутствие поля блуждающих токов разрешается применять схемы, содержащие вольтметр 5 и прерыватель 6 (рис. 18, в). В том и другом случае вольтметр должен иметь внутреннее сопротивление не менее 1 Мом на 1 в шкалы и пределы измерений 0- - 1,0- - 3в или другие, близкие к указанным.  [c.106]


Поляризационный потенциал стальных трубопроводов в контрольных пунктах измеряют по схеме, данной на рис. 5а. В отсутствие поля блуждающих токов допускается измерять поляризационный потенциал по схеме, приведенной на рис. 56. В том и другом случае вольтметр должен иметь внутренне сопротивление не менее 1 Мом на 1 В шкалы и пределы измерения 1-0-1,3-0-3 или другие, близкие к указанным.  [c.19]

При облучении потоком электронов структуру молибденовых тонких фолы изучали методами измерения электросопротивления и внутреннего трения. Эти исследования проводили при температуре жидкого азота или гелия, так как дефектность структуры, вызываемая электронным облучением, термически нестабильна. В работе [187] было установлено, что уже при температуре 31 и 40 К в молибдене, подвергнутом облучению электронами, наблюдаются пики внутреннего трения. При измерении остаточного сопротивления образцов, подвергнутых облучению при температуре жидкого гелия (4,2 К), было установлено [166], что при увеличении температуры до 40 К электросопротивление образцов резко снижается. При дальнейшем росте температуры оно меняется мало. Однако по мере увеличения энергии электронов с 1,05 до 1,45 и 1,85 МэБ электросопротивление растет соответственно с 0,34 до 2,91 и 4,9 мкОм-см.  [c.72]

Склонность аустенитных нержавеющих сталей к межкристаллит-ной коррозии определяется по ГОСТу 6032—58. О наличии межкри-сталлитной коррозии после испытаний в воде или паре судят или по результатам металлографических исследований, или по изменению электрического сопротивления образцов и измерению внутреннего трения [11,10].  [c.66]

Как видно из формулы, верхний предел измерений 7 пл тем больше, чем выше Однако выбор сопротивления ограничен возможностями потенциометра и величина его не должна существенно превышать внутреннего сопротивления прибора. Так, для ЭПП-09 внутреннее  [c.351]

Измерение внутреннего сопротивления применяется для слоистых материалоч (гетинакс, текстолит и т. п.), у которых электропроводность в направлении вдоль слоев, как правило, значительно больше, чем в направлении лоперек слоев. В этом случае согласно ГОСТ 6433-52 применяются два металлических (медных, латунных или стальных) электрода, которые плотно вставляются в просверленные в образце отверстия (фиг. 21-12) измеряются ток, проходящий через образец между двумя указанными выше электродами (без применения охранного электрода), и внутреннее сопротивление образца подсчитывается по формуле  [c.21]

Для непосредственного измерения i можно ввести в день фотоэлемента какой-нибудь прибор, измеряюш,ий силу тока. Обычно в качестве такого прибора используют второй гальванометр. При удачной конструкции усилителя, обеспечении хороших контактов, сведении к минимуму вибраций и т. д. удается, используя два простых кембриджских гальванометра с внутренним сопротивлением 500 ом, работать с сопротивлением/ = 20 ом, а при благоприятных условиях с еще меньшим сопротивлением. При этом достигается увеличение чувствительности по напряжению примерно в 25 раз по сравнению с собственной чувствительностью гальванометра этого типа. Иными словами, если гальванометр без усилителя имеет чувствительность примерно 2 мм мкв при расстоянии от зеркала до шкалы 1 м, то при использовании описаиной схемы с двумя такими же гальванометрами чувствительность достигает 5 см1мкв. Действие сильной отрицательной обратной связи выражается в том, что свойства системы становятся почти не зависящими от параметров гальванометра и фотоэлементов. Это избавляет нас от необходимости заботиться о линейности первичного гальванометра и фототока [см. (10.1)].  [c.177]

Под внутренним трением понимают способность твердых тел необратимо поглощать и рассеивать внутрь материала сообщаемую извне механическую энергию. Внутреннее трение — это неупругое релаксационное свойство, проявляющееся как вязкое сопротивление взаимному перемещению частей одного и того же твердого тела при его деформировании или при сообщении ему механических колебаний [277—279]. Знание величины внутреннего трения позволяет выбирать демпфирующие материалы для гашения механических йолебаний (здесь необходимо высокое внутреннее трение) или рекомендовать сплавы, практически не рассеивающие упругую энергию, т. е. обладающие незначительным внутренним трением. Кроме того, измерение внутреннего трения дает информацию о механизмах фазовых превращений, диффузии, кинетике выделения избыточных фаз и др. Методика внутреннего трения может быть использована для оценки работоспособности материалов в условиях их длительной работы при сложных температурных и силовых воздействиях [227].  [c.184]

Очевидно, обычный способ измерения показателя pH с использованием традиционного усилителя с высокоомным входом (10 -Ю Ом) и обычного электрода сравнения с внутренним сопротивлением от 10 до 20 кОм неприменим при анализах вод с высоким сопротивлением. Одним из способов решения вопроса является применение в качестве электрода сравнения вместо традиционного каломельного электрода со значительно более высоким внутренним электрическим сопротивлением. В качестве Такого электрода можно использовать второй стеклянный электрод. При этом йнутреннее сопротивлением обоих электродов возрастет примерно до 10 Ом и двойной высокоомный усилитель с входным сопротивлением 10 Ом на каждом входе будет чувствовать влияние электрического сопротивления воды около 10 Ом на расстоянии 1 см. Даже на расстоянии между электродами 1 м сопротивление анализируемой воды составит лишь 10 Ом. В худшем случае входное сопротивление электродов достигает лишь 2 -10 Ом.  [c.33]

На рис. 3.8 показано измерение потенциала поляризованной стальной поверхности, регистрируемое после отключения защитного тока при помощи быстродействующего самописца (со временем успокоения стрелки 2 мс при ее отклонении на 10 см) с различными скоростями протяжки бумажной ленты. Потенциал отключения, полученный при скорости протяжки ленты 1 см с- , соответствует значению, измеренному при помощи вольтметра с усилителем. Из рис. 3.8 видно, что погрешность, получающаяся при измерении потенциалов приборами со временем успокоения стрелки 1 с, составляет около 50 мВ, потому что небольшая часть поляризации как омическое падение напряжения тоже входит в результат измерения [10]. Для измерения потенциалов выключения необходимо, чтобы измерительные приборы имели время успокоения стрелки менее 1 с и апериодическое демпфирование. Время успокоения стрелки универсального прибора зависит от его входного сопротивления и сопротивления источника напряжения, а у вольтметра с усилителем — от усилительной схемы. Время успокоения стрелки может быть определено с помощью схемы, показанной на рис. 3.9 [11]. При этом внутреннее сопротивление измеряемого источника тока и напряжения моделируется сопротивлением (резистором) Rp, подключенным параллельно измерительному прибору. В качестве сопротивлений R и Rp целесообразно применять переключаемые десятичные резисторы (20—50 кОм). Потенциометр Rt (с сопротивлением около 50к0м) предназначается для настройки контролируемого прибора на предельное отклонение стрелки. У приборов с апериодическим демпфированием отсчет времени успокоения стрелки прекращается при установке показания на 1 % от конца или начала шкалы. У приборов, работающих с избыточным отклонением стрелки, определяют время движения стрелки вместе с избыточным отклонением и одновременно определяют величину избыточного отклонения в процентах по отношению к максимальному значению. В табл. 3.2 приведены значения времени успокоения стрелки некоторых приборов, обычно применяемых при коррозионных испытаниях, проводимых при наладке защиты от коррозии (самопишущие приборы см. в разделе 3.3.2.3).  [c.93]


В отличие от напряжения постоянного тока напряжение переменного тока можно измерять при помощи электрода сравнения типа земляной пики (заостренного стального стержня, втыкаемого в грунт) переходное сопротивление у таких металлических стержней ниже, чем у электродов сравнения, перечисленных в табл. 3.1, но для измерений приборами электромагнитной системы или приборами электродинамической системы оно может все же оказаться слишкой высоким. Поэтому рекомендуется при измерениях напряжения переменного тока применять также вольтметры с усилителями или самопищущие приборы с усилителями, которые имеют высокие внутренние сопротивления, высокую точность измерений и линейную шкалу. В технике измерений переменного тока важно учитывать частоту и форму кривой тока. Обычно измерительные приборы тарируют на эффективные значения при частоте 50 Гц и синусоидальной форме кривой тока. Поэтому при иной частоте и иной форме кривой тока (при управлении с фазовой отсечкой) они могут давать искаженные показания. Погрешности измерения, обусловленные формой кривой тока, могут быть выявлены по получению различных показаний для одной и той же измеряемой величины в различных диапазонах измерения.  [c.100]

Выявлять наличие блуждаюш их токов в земле на трассе проектируемого подземного металлического сооружения рекомендуется по результатам измерений разности потенциалов между проложенными в данном районе подземными металлическими сооружениями и землей (рис. 16). При отсутствии подземных металлических сооружений наличие блуждающих токов в земле на трассе проектируемого сооружения целесообразно определять путем измерения разности потенциалов между двумя точками земли через каждые 1000 м по двум взаимно перпендикулярным направлениям при разносе измерительных электродов на 100 м. При этом должны применяться вольтметры, имеющие внутреннее сопротивление не менее 20 ком на 1 в шкалы, с пределами измерений О 75 О -f- 0,5 О 1,0  [c.100]

КИМ, чтобы при всех температурах режим течения в капилляре был ламинарным. Калибровка внутреннего диаметра капилляра производилась посредством измерения омического сопротивления, а также путем взвешивания ртутного столбика, заполняющего весь капилляр. При соединении капилляра с капельной трубкой, осуществляемом через стеклянную (М-600) соединительную трубку 8 (рис. 3-32) и соединительный корпус 7 из стали 1Х18Н9Т, один конец трубки 8 приваривался к капилляру, а другой конец ее через специальное уплотнение соединялся с корпусом 7. В этот же корпус пол углом 90° к трубке 8 посредством конусного уплотнения ввертывалась капельная трубка. Горизонтальная защитная трубка 9 выполнялась из стали 1Х18Н9Т с диаметром 14/21 мм. В резервуарах стеклянной капельной  [c.167]

Механотроны обладают малым внутренним сопротивлением, значительной чувствительностью по току и перемещениям (неиеиееЗ мка/мкм), большими пределами измерения (до 100 мкм) и малой вариацией в показа ниях (не более 0,04 лклг). Высокая чувствительность по току позволяет измерять электрический сигнал механотрона непосредственно стрелочным электроизмерительным прибором. Долговечность работы механотрона — до 2000 ч.  [c.102]


Смотреть страницы где упоминается термин Измерение внутреннего сопротивления : [c.367]    [c.154]    [c.257]    [c.48]    [c.167]    [c.113]    [c.20]    [c.82]    [c.93]    [c.100]    [c.108]    [c.236]   
Справочник по электротехническим материалам (1959) -- [ c.21 ]



ПОИСК



Измерение внутренних

Измерение сопротивления

Сопротивление внутреннее



© 2025 Mash-xxl.info Реклама на сайте