Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия в бесконечности при движении теории упругости

Как известно (см. раздел Д.1), динамическая задача теории упругости сводится к начально-краевой задаче для уравнений движения в перемещениях (Д.4). Применяя преобразование Лапласа (Д.38) к уравнениям движения, граничным и начальным условиям, вместо одной начально-краевой задачи для нестационарной системы уравнений (Д.4) получим бесконечное множество краевых задач для стационарной системы  [c.206]


Предположение о плоскопараллельности приемлемо только в частных задачах, например в задаче аэродинамики о движении перпендикулярно к своей образующей бесконечного цилиндрического крыла в газе или жидкости, в некоторых задачах о волнах на поверхности тяжелой жидкости, в ряде задач теории упругости, например в задаче о равновесии длинной цилиндрической балки, поперечное сечение которой находится под действием произвольно расположенных в его плоскости внешних статически равных нулю нагрузок, когда нагрузки не зависят от продольной координаты, а перемещения в продольном направлении запрещены условиями закрепления, и т. д.  [c.343]

Формула (3.91) справедлива, когда длина волны велика по сравнению с толщиной пластинки й. Когда же длина волны становится сравнимой с толщиной, распределение напряжений по сечению пластинки, перпендикулярному фронту волны, перестает быть равномерным. Тогда надо использовать точные уравнения теории упругости (2.8), (2.9), (2.10) и граничные условия, выражающие, что поверхности пластинки свободны от напряжений, причем анализ совершенно аналогичен тому, который описан в гл. II для волн Релея. Лемб [78] рассмотрел распространение синусоидальных плоских волн в бесконечной пластинке и показал, что при симметрии движения относительно срединной плоскости пластинки уравнение частот имеет вид  [c.80]

В этой главе мы ограничимся в основном рассмотрением распространения упругих волн в изотропной упругой пластинке п изотропном упругом цилиндре. Для этих двух случаев точные решения уравнений движения можно получить пз классической теории упругости, которая имеет дело с бесконечно малыми деформациями. Эти решения удовлетворяют уравнениям упругого движения и граничным условиям на свободных поверхностях, параллельных направлению распространения волны. Такими поверхностями для пластинки являются две параллельные плоскости, а для цилиндра — криволинейная внешняя поверхность. Кроме того, решения представляют собой распространяюш,иеся нормальные волны ), которые существуют в этпх двух типах упругих волноводов. Основное внимание в этой главе уделено распространению нормальных волн в неограниченных пластинках и цилиндрах. Одиако кратко рассматриваются танзке специальные задачи, связанные с удовлетворением граничш,1х условий на торцевых поверхностях пластинок и.т]и цилиндров конечной длины для различных нормальных волн.  [c.140]


В теории свободных колебаний упругого твердого тела приходится интегрировать. уравнения колебательного движения при заданных граничных условиях, относящихся к напряжениям и смещениям. Пуассон зб) дал решение проблемы свободных радиальных колебаний упругой сферы, а Клебш по образцу решения Пуассона, построил общую теорию. В эту теорию входит обобщение понятия нормальных координат на случай системы с бесконечно большим числом степеней свободы, введение соответствующих фундаментальных функций и доказательство тех свойств этих функций, с которыми приходится иметь дело при разложении любой заданной фуккции по этим функциям. Спор по вопросу о колебаниях струн, стержней, мембран и пластинок, который происходил как до Пуассона так и при нем, подготовил почву для обобщений Клебша. До появления трактата Клебша Ламе ) предложил другую теорию. Будучи знаком с исследованиями Пуассона о двух типах волн, ои пришел к заключению, что колебания всякого упругого тела должны распадаться на два соответствующих класса в согласии С,этим предположением он исследовал колебания различных тел. То обстоятельство, что его решения не удовлетворяли граничным условиям ля тел, поверхность которых свободна от напряжений, в достаточной мере компрометирует его теорию однако она была окончательно оставлена только после того, как все виды свободных колебаний однородной изотропной среди были изучены, и было доказано, что классы, на которые они распадаются, не соответствуют  [c.30]


Механика сплошной среды. Т.2 (1970) -- [ c.484 ]



ПОИСК



Движения условия

Теория упругости

Упругость Теория — см Теория упругости

Условия в бесконечности при движении

Условия на бесконечности



© 2025 Mash-xxl.info Реклама на сайте