Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диаграммы смятии

Излом а на обобщенной кривой течения (см. рис. 8.20) соответствует линии текучести, а точка б — конец кривой — разрушению от среза. Так устанавливаются уровни линий т, и в левой части диаграммы. Так как диаграммы Ттах =/ (g max) могут быть получены при различных видах напряженного состояния, обнаруживается хорошее согласование мест преждевременного обрыва обобщенной кривой течения, получаемой при том виде напряженного состояния, которому соответствует разрушение от отрыва. На рис. 8.21 показано, что в случае очень твердого материала преждевременный отрыв обобщенной кривой течения произошел при всех видах напряженного состояния (сжатие, кручение, растяжение), кроме смятия материала у поверхности. В случае твердого материала при двух видах напряженного состояния удается получить полную, обобщенную кривую течения (при смятии и сжатии), а при двух видах напряженного состояния (кручение и растяжение) в силу разрушения от отрыва происходит преждевременный обрыв  [c.554]


Диаграммы напряжение — деформация показывают, что композиционные материалы больше соответствуют по упругим свойствам чугуну и другим мягким материалам, чем стали или другим жестким материалам. Для большинства композитов существует два линейных участка на диаграмме напряжение — деформация, соответствующих двум модулям упругости. В основном композиты являются материалами, обладающими малыми деформациями разрушения (порядка 1ч-2 %). При конструировании соединений композиционных материалов необходимо знать прочность этих материалов при смятии и сдвиге, прочность при растяжении и сжатии, напряжения сдвига, возникающие при изгибе в соединениях. Необходимо также знание термических напряжений, пределов усталости и воздействия окружающей среды.  [c.381]

Нелегированные стали большой твердости. У этих сталей содержание углерода составляет 0,8—1,3%. В соответствии с венгерским стандартом MSZ их обозначение SS—S13. Устойчивость аустенита довольно мала в температурном интервале как перлитных, так я бейнитных превращений (рис. 162, 163). С повышением содержания углерода температурная область бейнитного превращения понижается, как показано на рис., 164, на диаграммах изотермических превращений инструментальных сталей S8 и S11. Прокаливаемость нелегированных инструментальных сталей сравнительно мала прутки диаметром 8—12 мм могут прокаливаться в воде (табл. 57). При охлаждении в воде возникают довольно большие внутренние напряжения, которые уменьшают предел прочности на изгиб. При закалке в масле глубина прокаливаемости минимальная. На поверхности закаленных в воде деталей диаметром 15—30 мм возникает закаленный слой удовлетворительной толщины. На поверхности деталей, имеющих диаметр более 30 мм, закаленный слой слишком тонкий. Такой слой не может выдержать без смятия даже давлений средней величины. С увеличением содержания углерода глубина закаленного слоя не увеличивается, однако растет твердость сердцевины (рис, 165). В этом большую роль играет температура закал-  [c.175]

В большинстве случаев механические испытания на изгиб проводятся сосредоточенной нагрузкой на образец, лежащий на двух опорах. Это испытание можно проводить почти на всех машинах, пригодных для испытания на сжатие. Большинство универсальных машин снабжено специальными раздвигающимися опорами для испытаний на изгиб. При этом максимальный момент создается только в одном сечении. Несомненно, во многих случаях следует предпочесть испытание двумя равными симметрично приложенными сосредоточенными нагрузками, создающими на определенном участке длины образца чистый изгиб (рис. 15.9). При этом максимальные напряжения возникают на определенном участке длины образца и потому оценивается уже не одно (случайное) сечение, а значительный объем образца, что делает результаты более надежными. Образцы для испытания большей частью имеют призматическую форму, обычно с прямоугольным сечением. Для того чтобы избежать смятия в опорах, желательно по возможности уменьшать изгибающую силу, что может быть достигнуто увеличением пролета. Диаграмма зависимости изгибающего усилия от стрелы прогиба дает максимум, часто совпадающий с появлением первой трещины. Иногда образование трещины сопровождается резкими срывами на ниспадающей ветви диаграммы (рис. 15.10).  [c.46]


При редуцировании тонкостенных труб величина относительного обжатия может лимитироваться устойчивостью трубы в калибре. Чрезмерно высокое обжатие может привести в этом случае к смятию трубы (см. рис. 241). Критическая величина относительного обжатия, согласно исследований А. А. Шевченко определяется диаграммой, приведенной на рис. 242. Принимаемые при калибровке труб обжатия не должны превышать критических величин. При редуцировании труб с большим натяжением, когда применяют высокие величины обжатия, проверка трубы на устойчивость особенно необходима. Очень часто по этой причине величину обжатия во второй, в третьей, а иногда и в четвертой клетях приходится снижать, что приводит к необходимости увеличения числа работающих клетей или снижения диаметра исходных труб.  [c.559]

Прежде чем приступить к определению графическим методом пределов пропорциональности и текучести по диаграмме растяжения, нужно сначала кривую растяжения вписать в систему координат, для чего на основании максимальной нагрузки Р , снятой непосредственно со шкалы машины, наносят ось абсцисс, а затем проводят прямую линию ОН (фиг. 135), совпадающую с прямолинейным участком кривой диаграммы, которая определяет точку О и положение оси ординат ОР. Начальным участком 0x0 кривой растяжения пренебрегают, так как он получается искаженным вследствие неизбежных смятий головок образца, деформации силоизмерительного и самопишущего механизмов.  [c.157]

Рис. 3.4.1. Характерная диаграмма деформирования Р = (А1) при смятии [82]. Рис. 3.4.1. Характерная <a href="/info/28732">диаграмма деформирования</a> Р = (А1) при смятии [82].
Рис. 3.4.3. Виды разрушения и диаграммы деформирования при испытаниях на смятие в зависимости от укладки армирующих волокон [224]. Рис. 3.4.3. <a href="/info/48010">Виды разрушения</a> и <a href="/info/28732">диаграммы деформирования</a> при испытаниях на смятие в зависимости от укладки армирующих волокон [224].
Рис. 3.4.4. Диаграмма разрушения при смятии [82] (материал — СВАМ) Рис. 3.4.4. <a href="/info/28733">Диаграмма разрушения</a> при смятии [82] (материал — СВАМ)
Так как мы предположили, что диаграмма распределений напряжений среза подобна диаграмме распределения смятия, то для сосны для разрушающих напряжений принимаем  [c.212]

Для определения концентрации напряжений воспользуемся диаграммой (рис. 279), изображающей эффективный коэффициент концентрации напряжений для прнзматвческоГо стержня из прочной стали по осредненным данным ряда авторов в зависимости ог р = г/Ь. Принятое обозначение р// = у/Н связано с величиной соотношением рд = иру Как видно Из выражений (22) и (24), напряжения изгиба и смятия определяются только относительной шириной шлица и и относительным радиусом галтели р /. Число шлицев и абсолютные их размеры не имеют значения. Соединения с малым числом крупных шлицев и с большим числом мелких шлицев (рис. 280,д) равнопрочны, если профили шлицев геометрически подобны.  [c.261]

Любые трещины, срывы ниток, смятие ниток, вытянутость резьбы, повреждение более двух смежных или более трех несмежных ниток, увеличение диаметра ходовой резьбы более чем па 5%, скручивание или изгнб в месте расположения резьбы или на ее границе Притупление одного из углов шестигранника, создающее уменьшение диагонали более 10% номинального размера Потеря упругости пружины с отклонением усилия сверх значения, предусмотренного диаграммой сжатия. Любые трещины или расслоения металла. Глубокая коррозия, когда глубина отдельных раковин превышает 10% диаметра проволоки Повреждения резьбы, смятие граней шестигранника, искривление стержня шпилек более 0,2 мм на 100 м длины, появление задиров  [c.273]


Эмпирический коэффициент Кс (рис. 76) получен иа основании диаграмм деформации при цилиндрическом контакте, в котором жесткость и продольные значения по смятию для шарнирного болта значительно выше, чем у материала проушины или корпуса [36]. Значении Кс следует понимать как коэффициент отлнчия предела текучести при растяжении от Оу при контактном сжатии [28J.  [c.323]

Диаграмма на рис. 7.8, будучи типичной для закаленных инструментальных, шарикоподшипниковых и т. п. сталей, показывает, что переход от растяжения и изгиба к кручению, а для более хрупких сталей — к сжатию и вдавливанию, позволяет количественно оценить пластичность этих материалов, которая может проявляться при мягких условиях нагружения при сжатии, смятии и т. п. Так, например, И. В. Кудрявцеву удалось выявить пластичность стали ШХ15 только при испытании на кручение ввиду преждевременного разрушения образцов при растяжении.  [c.266]

Величина обжатия, при которой начинается смятие профиля, зависит от тонкостенности труб. Более тонкостенные трубы теряют устойчивость при меньших обжатиях. Критическая величина обжатия может быть определена по диаграмме A.A. Шевченко и А. К. Зимина (рис. 99). В последней клети об-  [c.158]

Наклон волокон имеет существенное значение и при сжатии заметное снижение сопротивления начинается при угле 7—8 , при дальнейшем увеличении угла наклона до 45° происходит резкое падение сопротивленип, после чего оно с увеличением угла наклона снижается медленно. При угле между направлениями силы и волокон 90° будет уже сжатие поперек волокон. Несмотря на сравнительно малое сопротивление в этом случае Д. все ке довольно часто работает под такой нагрузкой. В качестве примера достаточно указать на шпалы, ступицы колес, соединения деревянных деталей болтами и пр. Испытания на сжатие поперек волокон связаны с известными затруднениями, т. к. в этом случае не всегда можно определить разрушающий груз. При сжатии поперек во.т1окон Д. уплотняется, и нередки случаи, когда высота образца уменьшается до /з начальной величины, а разрушение не наступает. В силу этого обычно ограничиваются или определением груза при пределе пропорциональности (по диаграмме сжатия) или же груза при определенной, заранее заданной величине деформации (напр. 5% по амер., англ. и герм, стандарту). При этом груз м. б. приложен на всю поверхность образца (смятие 1-го рода) или только на часть поверхности (смятие 2-го рода). Т. к. во втором случае имеют место изгиб и перевертывание волокон, то обп1ее сопротивление получается выше. Сопротивление сжатию поперек волокон (по Белелюбскому) составляет менее трети (27%) от сопротивления сжатию вдоль волокон для Д. хвойных пород и менее половины (40%) для Д. лиственных. Винклер нашел, что в среднем это отношение составляет 0,36, что почти совпадает с данными Белелюбского. Предел пропорциональности при сжатии поперек волокон очень низок у хвойных (примерно 0,35 от временного сопротивления для сосны) и довольно высок у лиственных (0,70 от временного сопротивления для дуба и березы). Отношение между пределами пропорциональности при сжатии вдоль и поперек волокон для Д. дуба (по Перелыгину) получилось равным 6 1 и ясеня 4 4. В Д. пород с хорошо развитыми сердцевинными лучами (дуб, бук, клен) сопротивление радиальному сжатию выше (груз при пределе пропорциональности примерно в 1,5 раза больше), чем тангентальному. В Д. пород с узкими лучами (ясень, каштан) сопротивление по обоим направлениям примерно одинаково, а у хвойных сопротивление танген тальному сжатию заметно превышает сопротивление радиальному сжатию предел пропорциональности для Д. лиственницы в первом случае в 1,5 раза выше. При косом направлении годовых слоев сопротивление сжатию поперек волокон оказывается ниже, чем при радиальном и тангентальном сжатии минимум сопротивления для Д. ели по данным Ланга соответствует углу между направ.иениями силы и годовых слоев в 45—60°.  [c.104]


Смотреть страницы где упоминается термин Диаграммы смятии : [c.270]    [c.294]    [c.126]    [c.116]    [c.70]    [c.279]   
Методы статических испытаний армированных пластиков Издание 2 (1975) -- [ c.111 ]



ПОИСК



Смятие



© 2025 Mash-xxl.info Реклама на сайте