Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент использования мощности двигателя по времени

Назначение. Равномерное движение звеньев механизмов может быть обеспечено в том случае, если во время работы будет соблюдаться равенство подводимой и расходуемой энергии. В этом случае имеет место равенство моментов движущих сил Л1д и моментов сил сопротивления Мс, приведенных к одному валу (при поступательном движении — соответственно Рд и Рс). Однако такие условия при работе механизмов выполняются редко и всегда имеет место избыток или недостаток энергии и избыточный приведенный момент на валу (положительный или отрицательный) АМ = /Ид — — Мс, вызывающий неравномерное движение. Назначение регулятора скорости состоит в сведении к нулю или компенсации влияния этого излишка энергии. Это может быть достигнуто либо за счет изменения движущих сил Мд при регулировании (изменение подачи пара в турбинах, топлива в двигателях, силы тока в электродвигателях), либо за счет изменения сил сопротивления Мс (путем создания добавочных сопротивлений, расходующих излишек энергии). Регуляторы, основанные на первом принципе, используются в нагруженных механизмах (силовых). Они обеспечивают более полное использование подводимой энергии к механизмам, а следовательно, и высокий коэффициент полезного действия. Регуляторы, основанные на втором принципе, используются в ненагруженных механизмах (несиловых), в частности, в приборах. Здесь вопрос полного использования подводимой к механизму энергии теряет свою остроту, так как в большинстве механизмов для возможности преодоления сил сопротивления при их случайном увеличении движущие силы умышленно создаются значительно большими так в лентопротяжных механизмах магнитофонов для обеспечения высокой стабильности вращающего момента мощность двигателя выбирается в три — пять раз больше номинальной расчетной, а в исполнитель-  [c.366]


Примером использования газотурбинных двигателей в военной технике может также служить созданный в последнее время в Англии экспериментальный газотурбинный танк (без башни). Хотя сам танк особого интереса не представляет, однако некоторые данные его двигателя интересны. Двигатель этого танка мощностью в 1000 л. с. выполнен по двухвальной схеме. Газогенераторная секция состоит из одной ступени центробежного компрессора и одной аксиальной ступени газовой турбины. Температура рабочего газа 800° С эффективный коэффициент полезного действия 16%. Использование на танке газовой турбины взамен поршневого двигателя позволяет сократить объем моторного отделения, уменьшить число передач в трансмиссии до двух—трех, а также значительно упростить конструкцию коробки передач. Вместе с тем серьезные трудности вызывает большой расход топлива, а также необходимость иметь дешевые жаростойкие материалы. Известные неудобства может представлять и значительный шум, возникающий при работе газовой турбины.  [c.387]

Невозможность совмещения мощностной и экономичной регулировок объясняется тем, что мощность двигателя повышается вместе с повышением скорости распространения пламени, которая достигает максимума при а — 0,8—0,9. Кроме того, мощность растет при повышении коэффициента наполнения, который также достигает максимума при а = 0,8—0,9, в то время как наиболее полное использование тепла может быть достигнуто лишь при 1,1.  [c.45]

Нагрузка на двигатель станка максимальна во время работы и минимальна при холостом ходе. Поэтому норма расхода электроэнергии на один станок в час определяется в киловатт-часах и слагается из потребной мощности Ыв для станка под нагрузкой, потребной мощности Л/х при холостом ходе и коэффициента использования машинного времени м. Тогда норма <7э расхода электроэнергии на один станок в час  [c.269]

Наконец, необходимо указать на большую инерционность энергетики и относительную живучесть ее объектов. Расчетный срок службы ТЭС и АЭС и их основного оборудования принимается 30 лет и более. Практика показывает, что за этот период экономически целесообразно может быть проведена лишь частичная реконструкция и модернизация и достигнуто относительно небольшое улучшение технико-экономических показателей, главным образом за счет совершенствования тепловой схемы, некоторого повышения КПД двигателей, снижения потерь, повышения надежности и ресурса оборудования, сокращения вынужденных простоев и остановок, увеличения коэффициентов эксплуатационной готовности и использования проектной мощности. Если к 30 годам добавить время, затраченное на разработку оборудования и его изготовление, а также на строительство, то это составит. около 40 лет. За этот период научно-технический прогресс в машиностроении и энергетике шагнет далеко. Это означает, что уже при проектирований энергетических установок необходимо предусматривать возможности их технического усовершенствования и реконструкции и закладывать прогрессивные решения в принципиальные схемы компоновки и конструкции оборудования, всемерно обеспечивая его длительную эксплуатационную готовность, безотказность и надежность, а также ремонтопригодность и контролируемость состояния в ходе эксплуатации.  [c.67]


Успехи применения газотурбинных двигателей в авиации создали возможность использования их в качестве стационарных и транспортных установок, которые в отличие от авиационных должны работать более длительное время. Правда, достижения в создании подобных газотурбинных установок еще достаточно скромны. Дело в том, что жаропрочные стали дороги, а обычные непригодны для изготовления лопаток турбины, работающих при температурах выше 900° С без охлаждения. Рабочие температуры стационарных газотурбинных установок достигают пока лишь 600-700° С, а для транспортных машин — не выше 800-850° С при сроке службы до 5000 ч. Регенераторы не нашли еще себе конструктивного решения. Поэтому на стационарных установках удается пока получать коэффициент полезного действия 32 33%, на мощных транспортных установках — 18-25% и маломощных (меньше 500 л. с.) — 10-18%. Кроме того, газотурбинная установка, работая на режимах переменной мощности, имеет характеристику расхода-топлива менее благоприятную, чем поршневой двигатель внутреннего сгорания.  [c.386]

Когда тяговые электродвигатели требуют для себя мощности большей, чем дает двигатель внутреннего сгорания, то буферная аккумуляторная батарея работает параллельно с двигателем внутреннего сгорания, а когда расход энергии тяговыми двигателями уменьшается (движение накатом, стоянка или остановка у светофора), то происходит зарядка аккумуляторной батареи. Важно то, что двигатель внутреннего сгорания, работая все время в стационарном режиме, может быть выполнен особым образом. Современный прогресс в высокооборотных двигателях позволяет сделать двигатели для системы КЭСУ при потребной мощности в 6 12 кВ, с числом оборотов коленчатого вала в 8000—10 ООО об/мин с весьма низкой средней скоростью поршня, при полном использовании явлений колебания воздуха на всасывании и на выпуске. Высокие обороты коленчатого вала двигателя позволят поднять степень сжатия без опасения появления детонации и добиться при интенсифицированном зажигании устойчивой работы на стационарном режиме работы двигателя при а 1,35, что обусловливает отсутствие окиси углерода и минимум наличия окислов азота. Литровая же мощность при больших оборотах, несмотря на высокое значение коэффициента избытка воздуха а, будет достаточно велика.  [c.398]

Использование радиоизотопов в качестве источников тепла затруднено тем, что невозможно контролировать скорость выделения энергии таким образом, необходимо предусматривать вспомогательную систему охлаждения с целью предотвращения разрушения (плавления или испарения) источника тепла в то время, когда он не используется. Другой недостаток связан с ограниченными возможностями производства радиоизотопов [31]. При таком высоком значении коэффициента полезного действия преобразования, как 1%, потребовался бы реактор с установленной мощностью 10 Мет, чтобы получить источники тепла для двигателей большого ракетного летательного аппарата, действующих в течение месяца. Такая мощность па порядок выше мощности всех силовых установок США, действующих в настоящее время. Основной недостаток рассматриваемого метода состоит в том, что удельная выходная мощность почти любого из пригодных к использованию радиоактивных изотопов очень низка с точки зрения стандартных характеристик ракетного дви-  [c.534]

Промышленностью изготовляется большая номенклатура двигателей (см. табл. 4). Параметры их все время пересматриваются в сторону увеличения мощности за счет применения наддува и форсировки по частоте вращения. Естественно, что при ориентации на одно значение расчетного коэффициента момента >. расч для использования указанной номенклатуры двигателей необходимо большое количество типоразмеров передач. Так как гидродинамические передачи применяются на многих машинах, для которых значение q меняется в широких пределах (см. табл. 3) количество типоразмеров передач должно быть практически неограниченным, что не может быть оправдано. В связи с этим, при организации серийного производства гидродинамических передач исходят из определения допустимого научно обоснованного изменения коэффициента момента (мощности) насосного колеса.  [c.43]


Величина f p всегда меньще единицы, так как двигатели никогда не работают все время с полной мощностью. Поэтому величина кд всегда больше коэффициента использования установленной мощности.  [c.412]

Суммарное время может быть иринято с учетом работы двигателя под нагрузкой и на холостом ходу или без включения времени холостого хода. В первом случае среднюю эксплуатационную мощность обозначим брутто м ет, а во втором— нетто Ы ет. Из определения ясно, что Ы ет> ет- Сравнительную степень загрузки двигателей в различных условиях целесообразно характеризовать коэффициентом использования  [c.236]

Мощность днзелей прп применении газотурбинного наддува может быть повышена нз 50, о и бо.лее. Токсичность отработавших газов вследствие протекания процесса при большем коэффициенте а меньшая, чем в дизеле без наддува. При надлежащей отработке конструкций и технологии, применении легированных материалов ресурс дизелей с газотурбинным наддувом может быть доведен до столь же высокого уровня, 1 ак и у дизелей без наддуна. Стоимость двигателя, отнесенная к единице мощности, при наддуве будет меньшая. Этпм определяется больпшя перспективность применения дизелей с газотурбинным наддувом в автомобильной технике. В то же время прп больших преимуществах газотурбинного наддува его использование на автомобильных двигателях связано с преодолением существенных трудностей.  [c.215]


Смотреть страницы где упоминается термин Коэффициент использования мощности двигателя по времени : [c.63]   
Погрузочно-разгрузочные работы (1980) -- [ c.26 ]



ПОИСК



Коэффициент использования мощност

Коэффициент использования мощности

Коэффициент мощности

Мощность двигателя



© 2025 Mash-xxl.info Реклама на сайте