Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловой поток диффузионная составляющая

Первое слагаемое правой части уравнения (13.38) определяет перенос теплоты теплопроводностью, второе — конвекцией и третье — молекулярной диффузией. Плотность теплового потока в однокомпонентной движущейся среде определяется уравнением (13.20), следовательно, в движущейся смеси появляется диффузионная составляющая теплового потока.  [c.198]

Уравнение энергии (без учета диффузионной составляющей теплового потока)  [c.456]


Таким образом, в смеси дополнительно появляется диффузионная составляющая теплового потока.  [c.332]

Влияние лучистой составляющей сложного теплообмена скажется на значении толщины пограничного слоя. Очевидно, что при допущениях диффузионного приближения учет радиационной составляющей теплового потока приведет к увеличению толщины теплового пограничного слоя (по сравнению с чистой конвективной теплоотдачей) к, следовательно, к уменьшению градиента температуры на поверхности.  [c.65]

Для практически важных значений критерия Ви=1—2 суммарный удельный тепловой поток с увеличением Ви уменьшается с 24 до 19 кВт-м-2 и доля конвективной составляющей в суммарном удельном тепловом потоке увеличивается от 16,5 до 24 %. Равное значение лучистой и конвективной составляющей достигается при значении Ви = 9, что несколько больше, чем для условий ламинарного пограничного слоя. Влияние лучистой составляющей на суммарный тепловой поток перестает быть существенным при Ви>60, что значительно больше соответствующих значений Ви для условий ламинарного пограничного слоя (Ви = 20). Это объясняется влиянием турбулентного коэффициента теплопроводности на диффузионный процесс переноса лучистой тепловой энергии. Турбулентный коэффициент переноса интенсифицирует процесс передачи тепла как за счет конвекции, так и за счет радиации. Однако зависимость радиационной составляющей от температурного напора ДГ более сильная, чем составляющей конвективной. Значение суммарного удельного потока для условий примера, определенное по зависимости, традиционно применяемой для задач огнестойкости, более чем в 2 раза превышает найденные в соотношении с настоящей теорией. Причем если величина конвективной составляющей практически одинакова (д. =4,2 кВт-м" ) и по настоящей теории при изменении Ви от 1 до 2 изменяется от 4 до 4.4 кВт-м- , то значения радиационной составляющей существенно отличаются лучистая составляющая, найденная в соответствии с традиционным методо.м, 9пв=45 кВт-м" и по настоящей теории дан=24—19 кВт-м- при изменении Ви от 1 до 2. Такое различие объясняется тем, что в традиционном методе расчета используется модель оптически прозрачной среды между двумя бесконечными плоскопараллельными поверхностями. Для задач определения фактического предела огнестойкости в связи со спецификой проведения экспериментов такая модель допустима. В условиях реальных пожаров она вносит существенную ошибку в анализ теплового воздействия очага пожара на строительные конструкции. Сравнение результатов расчета удельных тепловых потоков на вертикальных конструкциях при пожарах, полученных с помощью разработанной в настоящем разделе теории с экспериментальными данными, приведено в разд. 3.3 настоящей главы.  [c.81]


Процесс конденсации пара из паровоздушной смеси при движении ее внутри вертикальных трубок пучка представляется следующим образом. По мере движения смеси по трубкам пар непрерывно конденсируется, при этом количество воздуха остается неизменным. В результате конденсации пара и постоянства живого сечения пучка скорость смеси непрерывно падает, а парциальное давление воздуха растет. Одновременно с этим падает и температура паровоздушной смеси вследствие понижения парциального давления пара и некоторого падения давления смеси из-за парового сопротивления. Снижение температуры пара по ходу смеси уменьшает температурный напор. Все это приводит к уменьшению коэффициента теплоотдачи с паровой стороны и удельного теплового потока q. При этом непрерывно изменяется соотношение отдельных составляющих термического сопротивления от смеси к пару. В начале процесса конденсации, когда парциальное давление воздуха в смеси мало, основным противодействием переходу тепла от пара к стенке является термическое сопротивление конденсатной пленки, а диффузионное сопротивление парогазовой пленки при движении смеси с большой скоростью практической роли не играет. По мере движения смеси и падения ее скорости  [c.159]

Здесь Уд., Vу, 1 у,. у,. .у - составляющие вектора скорости, диффузионного потока /-го компонента, тепловых потоков тяжелых частиц (индекс Л) и электронов (индексе) по осям цилиндрической системы координат А , Г, ф р, М - плотность, молекулярная масса Р, Р1,, Р- давления смеси, тяжелых частиц и электронов т т - масса частицы /-го сорта и смеси Т, Г , Т- температуры поступательно-вращательных степеней свободы тяжелых частиц, колебательных степеней свободы молекул О2, N2 и электронов с,. А,, Н, , 2 0 , - относительная массовая концентрация, энтальпия, массовая скорость образования, заряд, характеристическая колебательная температура, колебательная энергия/-го компонента X, , Я, , X", X"), -коэффициенты теплопроводности электронов, поступательно-вращательных, поступательных степеней свободы тяжелых частиц, колебательных и вращательных степеней /-ГО компонента (т = 1 для ламинарного и т = I для турбулентного режимов  [c.157]

В поверхностных аппаратах стенки обычно диффузионно непроницаемы, поэтому базовые элементы для их исследования можно изготовлять сплошными. Они реагируют на суммарный тепловой поток, проходящий через стенку аппарата, в связи с этим для парожидкостных и жидкостножидкостных теплообменников тепломассомеры выполняют односекционными лучистая составляющая практически всегда отсутствует, а при кипении либо конденсации на стенке связь между плотностями потоков теплоты и массы линейна.  [c.57]

Если сжатый слой формирует газодинамическую картииу обтекания тела, то пограничный слой у его поверхности, составляющий при обычных условиях лишь малую часть сжатого, определяет тепловые и диффузионные потоки к поверхности. В данном случае мы имеем в виду  [c.33]

Зависимость сил резания от скорости ленты имеет экстре-, мальную точку минимума, правее которой процесс шлифования протекает при повышенных затратах на трение. Следовательно, за оптимальную скорость ленты необходимо брать ее значений левее экстремальной точки минимума, но вблизи от нее, бднако надо учитывать, что при изменении скорости меняются значений мощности, тепловых потоков и температур, сопровождающих процесс шлифования. В частности, с увеличением скорости ленты уменьшаются тангенциальная составляющая силы резания Рг, адгезионная составляющая силы трения и т. д. Это объяй няется меньшим временем контакта зерен абразива с ойраба тываемым материалом с увеличением скорости ленты, меньшим протеканием диффузионных и адгезионных явле- "  [c.107]

При анализе второго члена в уравнении (3.15), описывающего лучистую составляющую эффективного теплового потока, необходимо оценить оптическую толщину теплового пограничного слоя То. Трудности, возникающие при решении интегродифференциальных уравнений лучистого теплообмена, привели к появлению ряда приближенных методов решения уравнений переноса излучением [3]. В приближениях оптически тонкого и оптически толстого слоев (последнее называется диффузионным или приближением Росселан-да) используются упрощения, вытекающие из предельного значения оптической толщины среды.  [c.64]


Примером может служить испарение жидкости с увлажненной пористой поверхности в парогазовую смесь (рис. 1.23). Плотность поперечного потока массы на стенке и нормальная составляющая скорости связаны соотношением 1(Ууо=/1пов/Рсм. в общих чертах воздействие сводится к изменению толщины пограничных слоев (динамического, теплового, диффузионного). Если поперечная составляющая направлена к стенке (конденсация, отсос), то толщины пограничных слоев уменьшаются и коэффи-  [c.54]


Смотреть страницы где упоминается термин Тепловой поток диффузионная составляющая : [c.430]    [c.200]    [c.472]    [c.285]    [c.400]    [c.470]   
Теплопередача (1965) -- [ c.323 ]



ПОИСК



Поток диффузионный

Поток тепла

Тепловой поток



© 2025 Mash-xxl.info Реклама на сайте