Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кобальта фосфором

Химическое осаждение сплава никель — кобальт — фосфор (г/л). 1. Аммония гидрат — до требуемого pH аммоний хлористый — 50 кобальта хлорид—30, натрия гипофосфит—20 натрия цитрат—100 никеля хлорид — 30. рН= =8,5 /=90° С Q = 14 мкм/ч содержание кобальта — 23%, фосфора — 6,9%.  [c.211]

Никель- кобальт-фосфор Н-Ко-Ф Цинк-никель Ц-Н  [c.864]

СПЛАВЫ НИКЕЛЬ — ФОСФОР И КОБАЛЬТ - ФОСФОР Свойства и применение  [c.234]


Барабаны, покрытые сплавом кобальт — никель, используются при записи речи и музыки. Барабаны, покрытые тройным сплавом никель — кобальт — фосфор, применяются в качестве запоминающих устройств электронных вычислительных машин. Перед нанесением сплавов на поверхность барабанов осаждают медный подслой.  [c.577]

Н-Ко-Ф — никель—кобальт—фосфор  [c.15]

Ннкель—кобальт—фосфор Н-Ко-Ф  [c.35]

Каждый легирующий элемент обозначается буквой Н — никель X — хром К — кобальт М — молибден Г — марганец Д — медь Р — бор Б — ниобий Ц — цирконий С — кремний П — фосфор Ч — редкоземельные металлы В — вольфрам Т — титан А — азот Ф — ванадий Ю — алюминий.  [c.363]

В обозначении марки первые две цифры указывают среднее содержание углерода в сотых долях процента. Буквы за цифрами обозначают С — кремний, Г — марганец, Н — никель, М — молибден, П — фосфор, X — хром, К — кобальт, Т — титан, Ю — алюминий, Д — медь, В — вольфрам, Ф — ванадий, Р — бор, А — азот, Н — ниобий, Ц — цирконий.  [c.13]

Химические элементы в марках стали обозначают следующими буквами марганец Г кремний С хром X никель Н молибден М вольфрам В ванадий Ф титан Т алюминий Ю медь Д ниобий Б кобальт К бор Р фосфор П цирконий Ц селен Е.  [c.223]

Восстановление кобальта с достаточной скоростью как при восстановлении никеля, протекает при повышенных температурах (90— 95 °С) Включения фосфора в покрытия кобальтом оказывают важное влияние на структуру и свойства покрытия на их магнитные характеристики Свойства Со—Р-покрытия зависят от физико-химических параметров процесса его получения таких как значение pH состав раствора, температура и др  [c.53]

Одновременно с восстановлением кобальта всегда происходит реакция восстановления гипофосфита до элементарного фосфора (подробно механизм этого процесса разобран в процессе химического никелирования)  [c.54]

При дальнейшем повышении рН> 10 5 скорость восстановления кобальта падает а при pH 12 процесс прекращается (рис 15) Повышение pH приводит к уменьшению фосфора в покрытии На оптимальное значение pH раствора соответствующее максимальной скорости покрытия влияет концентрация и природа буферного соединения  [c.54]

В Со — Р-покрытиях обнаруживается преимущественная ориентация кристаллов текстура и степень совершенства которой зависят от условий их получения и содержания в них фосфора При поперечном срезе покрытий наблюдают четкую столбчатую струк туру перпендикулярную поверхности основы, а также слоистость, характерную и для Ni—Р покрытий Можно предполагать, что слоистость вызвана колебаниями в распределении фосфора по толщине покрытия которые связаны с периодическим изменением соотношения скоростей реакции восстановления кобальта и фосфора 1см уравнения (12) и (13)]  [c.57]


Полученные покрытия содержали (массовые доли %) железа 70 кобальта 30 Скорость осаждения составила 10 мкм/ч Содержание фосфора в Со — Fe — Р пленках падает по мере увеличения коли-  [c.71]

Все более широкое использование находят радиоактивные изотопы и ядерные излучения в медицине для диагностики и лечения различных заболеваний. Свыше полутора десятилетий в лечебных учреждениях Советского Союза применяются препараты радиоактивного йода для распознавания болезней щитовидной железы, изотопы фосфора и натрия — для исследований процессов гемодинамики (движения крови) при поражениях сердечно-сосудистой системы, изотопы йода и инертных газов (радона, ксенона, криптона) — для диагностирования опухолей мозга и пр. За последние годы значительно усовершенствованы и получили распространение в лечебной практике средства лучевой терапии, радиоактивные препараты (местные источники лучевой энергии), используемые для лечения злокачественных опухолей, и гамма-терапевтические облучающие установки глубокого проникающего воздействия (рис. 56), источниками гамма-излучений в которых служат радиоактивные изотопы кобальта-60 и цезия-137.  [c.192]

Шлифы хранят в стеклянных эксикаторах, в которые для интенсивного просушивания помещают безводный хлористый кальций, пентоксид фосфора, концентрированную серную кислоту или голубую соль кобальта, меняющую свою окраску на розовую при поглощении воды. Соли кобальта имеют то преимущество, что при нагреве они обезвоживаются, приобретают голубую окраску и могут вновь применяться. Такие же свойства имеет силикагель.  [c.26]

Очевидно, что описанная выше технология облучения абсолютно неприемлема для уничтожения микробов — возбудителей болезни или опухолей в организме больного человека. Облучение всего его организма необходимым уровнем радиации убило бы его гораздо быстрее, чем любая болезнь Тем не менее радиоизотопы могут безопасно и эффективно использоваться для уничтожения или задержки роста локальных опухолей в человеческом организме, если выбор местоположения источника облучения и время этой процедуры таковы, что облучение практически никакого вреда не наносит здоровым тканям. Радиотерапия (так называется этот метод лечения) невольно ассоциируется в сознании большинства людей с лечением рака. Однако она также широко применяется в наши дни при лечении различных кожных заболеваний, таких, как стригущий лишай и бородавки. Для лечения пораженных участков, находящихся на поверхности тела, не следует применять гамма- или рентгеновское излучение, обладающее интенсивной проникающей радиацией. В этих случаях наиболее подходящими будут радиоизотопы, излучающие альфа- и бета-частицы. Для этой цели широко используются стронций-90 и фосфор-32. Если опухоль локализована, радиоактивный источник можно поместить в непосредственной близости от пораженного места. Однако некоторые глубоко сидящие опухоли лучше всего подвергать облучению проникающей радиацией, направленной в человеческий организм из внешнего источника. Таким источником может служить высоковольтная машина, излучающая рентгеновское излучение, или радиоизотопы цезий-137 и кобальт-60, испускающие гамма-излучение.  [c.121]

Легирующие элементы обозначают следующими буквами Н — никель, X — хром, К — кобальт, В — вольфрам, М — молибден, Т — титан, С — кремний, Ф — ванадий, Г — марганец, Д — медь, П — фосфор, Ю — алюминий, Б — ниобий, Р — бор, Н — цирконий, А — азот, Ч — редкоземельные металлы.  [c.143]

Элементы, входящие в состав указанных инструментальных материалов углерод, кислород, кремний, алюминий, фосфор, сера, ванадий, титан, хром, марганец, железо, кобальт, никель, вольфрам — могут быть активированы. В результате активации будет получен изотоп соответствующего элемента с присущим ему излучением, периодом полураспада и другими характеристиками.  [c.98]

Железо, алюминий, никель и кобальт являются основными компонентами. Медь, титан и ниобий относятся к легирующим присадкам. Углерод, сера, фосфор, марганец и кремний — примеси, допустимое содержание которых составляет доли процента. Исключением является только кремний, который в зависимости от процентного содержания никеля является или вредной примесью или легирующим элементом, Влияние содержания элементов на свойства сплавов приведено в табл. 24.  [c.97]

Химический состав. Влияние углерода, кремния, марганца и серы на скорость распада цементита в первой стадии графитизации показано на фиг. 72—77. Фосфор в белом чугуне (0,1—0,2%) практически не влияет на скорость первой стадии графитизации хром весьма сильно тормозит распад цементита алюминий, медь, никель, кобальт и титан ускоряют распад цементита.  [c.547]


Маркировка легированных сталей согласно ГОСТ проводится по следующему правилу первые две цифры соответствуют среднему содержанию углерода в сотых долях процента. Содержащиеся в стали легирующие элементы обозначаются прописными русскими буквами Г — марганец, С — кремний, X — хром, Н — никель, М — молибден, В — вольфрам, ф — ванадий, Т — титан, Ю — алюминий, Д — медь, Б — ниобий, К — кобальт, Р — бор, П — фосфор, Ц — цирконий.  [c.142]

Ниобий — В Кобальт — К Бор — Р Фосфор — П Цирконий — Ц  [c.93]

Изучена структура некоторых переходных металлов (никель, железо, хром) и сплавов кобальт—никель—фосфор и кобальт—фосфор. Показано, что на основании металлографических исследований можно высказать предложение как о состоянии прикатодного слоя, так и о возможности применяемого режима при злектроосаждении для получения покрытий определенной структуры. Рис. 2, библ. 6.  [c.127]

В этих условиях осаждается покрытие, применяемое в качестве магнитного звукоснимателя в случае, когда необходимо высокочастотное стирание информации. Еще большую коэрцитивную силу (до 800 эрст) имеют покрытия из сплава никель — кобальт — фосфор. Это покрытие применяется для записи звуковых и незвуковых сигналов и может не только быть носителем записи, но и используется для создания постоянных магнитов небольшой толщины заданной конфигурации.  [c.70]

Валеева А. М., Сайфуллин Р. С., Яминова Г. Г. Исследование процесса нанесения композиционных покрытий с матрицей из сплава никель — фосфор и кобальт — фосфор, выделенных электрохимическим и химическим восстановлением. Рукопись деп. в отд. НИИТЭХИМ (Черкассы),.  [c.293]

К магнитожестким покрытиям с коэрцетивной силой, превышающей сто эрстед, относятся покрытия-сплавы типа кобальт-никель-фосфор, кобальт-фосфор, кобальт-вольфрам и некоторые другие. Они применяются в устройствах долговременной памяти, для производства малогабаритных магнитов постоянного тока и т. д.  [c.75]

Железо, кобальт и никель в атмосфере сухого воздуха при температурах до 150—250 °С покрываются защитной оксидной пленкой при дальнейшем нагревании взаимодействуют с кислородом, серой, фосфором, углеродом. Коррозионная стойкость этих металлов существенно улучшается после очистки от примесей. Эти металлы, особенно железо, ферромагнитны высокими магнитными свойствами обладают металлиды кобальта.  [c.145]

В результате реакции восстановления кобальта происходит под-кисление раствора на границе метвлл — раствор, что оказывает благоприятное влияние на протекание реакций восстановления фосфора, в результате чего образуется слой, обогащенный фосфором И, наоборот реакция приводящая к образованию фосфора сопровождается образованием ионов ОН а значит создаются благоприит ные условия для протекания реакции восстановления кобальта  [c.57]

Но в области температур 200—350 °С происходит процесс распада а твердого раствора с последующим выделением фазы интерметаллического соединения СогР А в области температур 350— 550 С идет процесс мод 1фикациоиного перехода а-твердого раствора в р-твердый раствор, который представляет собой твердый раствор замещения фосфора в решетке гранецентрированного р-кобальта, причем скорость этого перехода значительно выше скорости выделения фазы СогР, особенно в начальный момент перехода  [c.59]

Значительный интерес представляет покрытие Со — W — Р С увеличением концентрации вольфрамовокислого натрия скорость образования покрытия немного снижается При этом содержание вольфрама в сплаве увеличивается от 6 4 до 8 3 (массовые доли %), в то время как фосфор уменьшается от 2 6 до 1 6 (массовые доли %) (концентрация хлористого кобальта в этом случае составляла 36 г/л) Покрытия в этих условиях получались блестящими  [c.68]

Для удовлетворения нужд промышленности и сельского хозяйства, для диагностирования и лечения различных заболеваний и для проведения научных исследований в Советском Союзе изготовляется свыше ста разновидностей изотопов (кобальт-60, иридий-192, сурьма-124, цезий-137, стронций-90, таллий-204, церий-144, золото-198, йод-131, иттрий-90, фосфор-32 и пр.), около 2 тыс. химических соединений с радиоактивными изотопами и около 600 соединений со стабильными изотопами, используемых внутри страны и экспортируемых во многие страны мира. Столь же широко осуш ествлявтся выпуск специального оборудования по данным, относящимся к 1968 г., советскими предприятиями изготовлялось примерно 550 типов радиоизотопных приборов и аппаратов различного назначения и более 100 наименований средств противорадиационной защиты.  [c.164]

С помощью спектрального анализа с некоторыми ограничениями в стали и чугуне выявляются марганец, хром, медь, ванадий, вольфрам, кобальт, никель, титан и магний. Однако содержание углерода этим методом можно определить лишь для простых углеродистых сталей. Количественного спектрального анализа углерода, фосфора, серы и кремния в легированных сталях не делают, поэтому, если изменяется лишь процентное содержание этих составляющих, стали рассортировать спектральным методом лельзя.  [c.119]

Капсулированные порошки, иЭ которых получают композитные (двухслойные или многослойные) порошки. Чаш,е всего оксид, карбид, борид и т. д. капсулируют металлом или сплавом (никель, никель —фосфор никель—бор, кобальт и его сплавы медь медь—олово серебро). Металл или сплав могут осаждаться химическим способом.  [c.248]

Углерод О Натрий Кремний Spi Фосфор Р32 Сера S33 Калий К<2 Кальций Са -Скандий S e Хром Сг"1 Железо Fe s Железо Кобальт Со Никель NiG Медь uS4 Цинк Zn Германий Ge"i Мышьяк As Селен Se j Цирконий Zr js Олово Sn i Сурьма Sbl  [c.70]

Маркировка легированных конструкционных сталей. Легированные конструкционные стали маркируют цифра.ми и буквами. Двухзначные цифры,. приводимые в начале марки, указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры обозначают легирующий элемент А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, Н — никель, М — молибден, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ч — редкозел1вльный, Ю — алюминий.  [c.261]



Смотреть страницы где упоминается термин Кобальта фосфором : [c.228]    [c.329]    [c.577]    [c.256]    [c.201]    [c.175]    [c.93]    [c.230]    [c.61]    [c.72]    [c.58]    [c.192]   
Гальванотехника справочник (1987) -- [ c.340 ]



ПОИСК



Кобальт

Кобальтит

Фосфорит

Фосфоры



© 2025 Mash-xxl.info Реклама на сайте