Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплообменник-охладитель

Для Снижения расхода пара на испарительную установку и количества горячего дренажа из отдельных ступеней установлены теплообменники— охладители дренажей, в которых подогревается питательная вода испарителей.  [c.162]

Теплообменники — охладители продувочной воды, служащие обычно для подогрева добавочной воды котлов, устанавливаются централизованно, по одному или по два теплообменника на станцию.  [c.255]


Установка состоит из расширителя (сепаратора) продувочной воды с (фиг. 171), редукционного (игольчатого) клапана р на подводе воды в сепаратор, предохранительного клапана ПК на сепараторе и теплообменника(охладителя продувки) on, с необходимыми трубопроводами и арматурой. Пар, а также концентрат продувочной воды из расширителей котлов поступают в сборные магистрали, из которых отводятся пар — в линию отбора турбин (обычно 6 или 1,2 ата), концентрат — в охладитель продувочной воды и из него — в техническую канализацию или в подпиточную линию тепловой сети (на ТЭЦ с отопительной нагрузкой, фиг. 171).  [c.269]

Газ, подлежащий ожижению, сжимается компрессором 1 до давления р , охлаждается посторонним хладоагентом в теплообменнике-охладителе 2 и затем подается к редукционному вентилю 3. Проходя через вентиль, газ дросселируется до давления и его температура при этом понижается (разумеется, если состояние газа перед дросселированием располагается под кривой инверсии), однако пока еще эта температура далека от температуры кипения этого вещества при давлении р , обычно равном атмосферному. Этот несколько охладившийся газ направляется в теплообменник 4, где он противотоком омывает трубопровод (по которому газ подается к редукционному вентилю) и после этого поступает в компрессор. В результате процесса регенеративного теплообмена в теплообменнике температура газа, поступающего к вентилю, понижается следовательно, понижается и температура газа за дросселем. В свою очередь, этот газ в теплообменнике еще более охлаждает те порции газа, которые поступают к дросселю. Температура газа за дросселем становится еще более низкой и т. д. Процесс продолжается до тех пор, пока температура газа за редукционным вентилем не станет равна температуре насыщения при давлении р . Далее температура уже не понижается, а происходит конденсация газа при постоянной температуре. При этом из редукционного вентиля выходит двухфазная смесь. Жидкая фаза отделяется и выводится из установки, а газ через теплообменник возвращается в компрессор.  [c.456]

Гидравлические системы охлаждения и нагревания получили применение в качестве устройств для отвода теплоты от различных мащин или объектов (например, от двигателей внутреннего сгорания), а также для подвода теплоты к ним (например, к жилым помещениям). Принцип работы таких гидросистем заключается в следующем жидкость получает теплоту, затем переносит ее по трубопроводам на определенное расстояние и наконец отдает ее. В системах нагревания жидкость получает теплоту от нагревателя, а отдает ее нагреваемому объекту. В системах охлаждения жидкость получает теплоту от охлаждаемого объекта, а передает ее теплообменнику-охладителю. Следует отметить, что в рассматриваемых системах имеет место перенос теплоты жидкостью, но отсутствует преобразование теплоты в работу (или работы в теплоту), как в тепловых машинах или холодильных установках.  [c.260]


На рис. 18.7, а представлена схема одной из возможных систем смазки с мокрым картером. Она включает бак 2, которым является поддон картера двигателя, насос 8, фильтры 5 и Р, теплообменник-охладитель 4, а также клапаны 1, 6 и 7. Из бака 2 через фильтр грубой очистки 9 жидкость поступает в насос 8. Насос 8 нагнетает жидкость через фильтр тонкой очистки 5 и охладитель 4 в магистраль 3, из которой масло направляется к трущимся поверхностям двигателя, а от них вновь стекает в поддон картера (бак 2). В гидросистему включены также предохранительный клапан 7и клапан 1, поддерживающий постоянное давление в магистрали 3. Клапан перепада давления 6 открывается при чрезмерном засорении фильтра. В этом случае часть потока жидкости движется через клапан 6, минуя фильтр 5. Таким образом, при засоренном фильтре система будет работать, но с частичной фильтрацией масла.  [c.264]

На ряде турбоустановок пар от деаэратора вместе с неконденсирующимися газами (выпар) отводится к эжекторам, в которых используется в качестве рабочего тела. Такое решение является рациональным, так как при некотором увеличении требуемого расхода рабочего пара эжекторов позволяет отказаться от применения одного из теплообменников — охладителя выпара.  [c.324]

Рассматриваемый вид коррозии обязательно появляется почти повсюду, где растворы, а также вода сначала соприкасаются с арматурой, подогревателями, теплообменниками, охладителями  [c.561]

В зависимости от способа рассеивания теплоты, полученной охладителем, в окружающее пространство системы конвективного охлаждения подразделяют на замкнутые и разомкнутые. Обязательным элементом замкнутой системы охлаждения является теплообменник, в котором охладитель, получивший теплоту от горячей стенки, рассеивает ее в окружающую среду или передает другому теплоносителю. В этом случае вес системы охлаждения не зависит от времени ее эксплуатации.  [c.467]

I — компрессор для сжатия смешанного хладагента 2 — промежуточный и концевой охладители хладагента 3, 4, 5 — сепараторы 6 — теплообменник среднего давления 7 — теплообменник низкого давления —паровая турбина / — подача природного газа с газового промысла // — подача СПГ в хранилище  [c.184]

Рассмотренная выше схема ГТУ с подводом теплоты при постоянном давлении является разомкнутой, так как каждый следующий цикл осуществляется с новой порцией рабочего тела. В случае если схема ГТУ является замкнутой, продукты сгорания отдают теплоту рабочему телу — специально подобранному газу — в особом теплообменнике (газовом котле), а затем выбрасываются в атмосферу. Нагретый газ поступает в турбину, где, расширяясь, производит работу, а затем направляется в регенератор, нагревая сжатый газ, поступающий из компрессора. Далее отработавший газ охлаждается водой, циркулирующей в поверхностном охладителе, и подается компрессором обратно в газовый котел.  [c.204]

В связи с широким использованием теплообменников в различных областях техники возросло число их наименований, определяемых спецификой работы этих устройств. Так, встречаются парогенераторы, экономайзеры, воздушные калориферы, конвекторы, холодильники, конденсаторы, градирни, испарители, скрубберы, охладители выпара и т. д. Но несмотря на различное функциональное назначение этих аппаратов, методика теплового расчета является для них общей.  [c.422]

Образующийся в генераторе 1 за счет подвода тепла при температуре ti (- 30°С) концентрированный пар низкого давления pi поступает в охладитель 2, в котором он конденсируется, отдавая тепло q . окружающей среде при температуре io ( О С). Получившийся конденсат сжимается насосом 3 до давления рг (- 10 бар). При этом давлении за счет подвода тепла при температуре ty ( 30°С) жидкость испаряется в испарителе 4. Концентрированный пар высокого давления поступает в смеситель — абсорбер 5, где он смешивается с жидкостью низкой концентрации, имеющей примерно ту же температуру, что и пар. Выделяющееся за счет абсорбции тепло вызывает нагрев смеси до температуры 4 ( 150°С). Получающийся в абсорбере менее концентрированный пар, имеющий температуру поступает в теплообменник 6, где-отдает тепло конденсации дк сетевой воде, нагревая ее до температуры примерно 100° G нагретая вода в последующем может быть использована для нужд отопления. Конденсат из конденсатора проходит через дроссельный вентиль 7 и при давлении pi вновь поступает в генератор /. Жидкость, обедняющаяся в генераторе за счет выделения концентрированного пара, подается насосом 8 в смеситель.  [c.494]


К — компрессор X — холодильник или конденсатор ОХ — охладитель ОТ — основной теплообменник ПрТ — предварительный теплообменник  [c.313]

В смесительных аппаратах процесс теплопередачи происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. В этом случае теплопередача протекает одновременно с материальным обменом. Примером таких теплообменников являются башенные охладители (градирни), скрубберы и др.  [c.228]

На рис. 2.19 показаны две схемы, используемые в настоящее время реактор с кипящей водой (BWR), в котором образование пузырьков пара происходит в активной зоне реактора (рис. 2.19,а), и реактор с водой под давлением (PWR), в котором вода сохраняется под высоким давлением, что препятствует образованию пара (2.19,6). В реакторе BWR образующийся в активной зоне пар используется для вращения турбины. В реакторе PWR применяется теплообменник и поэтому турбину вращает пар вторичного контура. Образование высокой температуры в активной зоне реактора является следствием того, что продукты реакции деления теряют кинетическую энергию в твэлах. В ядерном реакторе температура производимого пара существенно ниже, чем в парогенераторе ТЭС на органическом топливе, поскольку при температурах охладителя выше 300 °С эффективность замедления становится слишком низкой. В результате термический КПД АЭС только 30%, в  [c.37]

В — при 360—550 С при производстве фталевого ангидрида из нафталина или о-ксилола путем каталитического окисления воздухом. И — нагреватели, реакторы, конверторные трубы, приемники-охладители, теплообменники, вакуумные реакторы для очистки, насосы, конверторные бесшовные трубы, применяемые для проведения низко- и высокотемпературных процессов, а также процессов в кипящем слое с катализатором при 450°С.  [c.478]

Теплообменник процесса, охладитель и конденсатор, теплообменник для повторного или дополнительного испарения, подогреватель теплообменника, маслоохладитель, турбинный конденсатор, воздушный компрессорный охладитель, работающий в течение и после процесса  [c.192]

Насосы системы активного впрыска низкого давления включаются автоматически еще до исчерпания емкостр гидроаккумуляторов по сигналам изменения давления в реакторе и в герметичных помещениях и изменения уровня в компенсаторе объема. Привод этих насосов осуществляется от системы надежного электропитания, а при больших авариях — от дизель-генераторов. В этом случае начало работы насосов фактически определяется временем запуска дизель-генераторов и набора ими номинальной мощности. Первоначально насосы подают охлаждающую воду в реактор из баков запаса борной воды. Объем баков рассчитывают, исходя из условий обеспечения номинального расхода охлаждающей воды в течение 15—30 мин. После опорожнения баков питание насосов обеспечивается из приямка герметичных помещений через теплообменники-охладители — режим продолжительной рециркуляции.  [c.109]

Однако, отвод дренажа паропреобразователя в смешивающий подогреватель повышенного давления не всегда устраняет опасность закипания воды в этом подогревателе. Поэтому большей частью приходится применять предварительное охлажденке дренажа потоком питательной воды паропреобразователя в специальном теплообменнике — охладителе дренажа паропреобразователя (фиг. 126).  [c.166]

Применение теплообменника-охладителя 2 необходимо в том случае, когда ожижается газ, у которого температура инверсии ниже, чем комнатная температура в этом случае дросселирование газа будет приводить не к понижению, а к повышению температуры. Поэтому при ожижении кислорода по методу Линде используется предварительное охлаждение жидким аммиаком, при ожижении водорода (7 183 К) — жидким азотом, а при ожижении гелия (Гдяв 38 К) — жидким водородом.  [c.456]

Теплообменник-охладитель 456 Теплота дисгрегации 143  [c.507]

Рассмотрим термодинамический цикл холодильной установки, хладагентом которой является газ (например, воздух). Схема такой установки, представленная на рис. 9.9, включает в себя компрессор 3, два теплообменника (2 и 4), а также детандер 1. Компрессор 3 нагнетает хладагент, т.е. обеспечивает повышение давления доpi. Затем хладагент поступает в теплообменник-охладитель 2, который служит для охлаждения хладагента. Далее хладагент проходит через детандер 1, в котором обеспечивается снижение его давления до Р2- После детандера установлен теплообменник-нагреватель 4, в котором хладагент отбирает теплоту от охлаждаемого объекта. Затем хладагент направляется к компрессору 3 и рабочий цикл повторяется вновь.  [c.120]

Подогрев сетевой воды производится в пароводяном теплообменнике (бойлере) насыщенным паром давлением 0,6 МПа. Образующийся конденсат во избежание последующего вскипания в деаэраторе охлаждается до = 75 °С в водо-водяном теплообменнике - охладителе конденсата. Таким образом, обратная сетевая вода до поступления в основной пароводяной подогреватель нагревается, проходя через охладитель конденсата. Потери сетевой воды потребителями принять равными 1,5 % от её общего расхода  [c.8]

При неудовлетворительном качестве конденсат греющего пара направляется в теплообменник (охладитель конденсата бойлеров — ОКБ), где отдает часть своего тепла в систему регенерации, доохлаждается в конденсаторе и подается на БОУ  [c.370]

Деазратордые баки и головки. Конденсатные, дренажные и другие баки. Расширители дренажей непрерывной и периодической продувки, теплообменники, охладители выпара конденсата. Перекачивающие, дренажные, конденсатные и другие насосы. Баки воды охлаждения подшипников. Арматура, трубопроводы, опоры, подвески, лестницы и площадки в пределах установки. Местные КИП. Гидравлическое испытание. Промывка и продувка трубопрово-,цов. Обкатка насосов  [c.542]


Как отмечалось в гл. 10, наряду с вертикальным поперечно продуваемым слоем представляют интерес теплообменники с наклонным поперечно продуваемым движущимся слоем. Согласно [Л. 340] подобные устройства разрабатывались для фиксации ( закалки ) азота при продувке сползающего слоя гальки (шаровидной насадки из 977о MgO диаметром 12,5 мм) газом, быстро снижающим свою температуру от 2 370 до 287—315° (рис. 11-9), Затем переключением четырехходового вентиля слой, охладивший газы, становится нагревателем для воздуха, а подогревающий слой — охладителем. Время полного цикла 6 мин, Gt = 226- 906 кг ч, Арсл = 0,28- 0,35 бар, объемный коэффициент теплоотдачи в слое (21—31)-10 вт1м -град. Кладка зоны горения, расположенной над сползающим слоем насадки, выполнена из 97% MgO в виде подвесного свода. Опыт наладки и двухмесячной работы установки потребовал снижения температуры стенок до 2 040°, что уменьшило спекание насадки. Однако производительность установ-  [c.383]

Для защиты откачиваемых объемом от попадания рабочих жидкостей вакуумных установок в технике вакуумирования используются вакуумные ловушки, исключающие возможность попадания в откачиваемую полость паров жидкости и масла [65]. Повышение эффективности работы вакуумных охлаждаемых ловушек может быть достигнуто с помощью двухдиффузорной вихревой трубы с конической камерой энергоразделения [31] (рис. 6.14). Вакуумная охлаждаемая ловушка содержит корпус 1 с входным 2 и выходным 3 патрубками и размещенный в корпусе 1 охлаждаемый элемент 4 с каналом 5 для газообразного хладагента, сообщенным с газовым автономным охладителем, содержащим теплообменник-регенератор с линиями прямого 6 и обратного 7 потоков, первая из которых подключена к источнику высокого давления. Газовый автономный охладитель выполнен в  [c.304]

При создании современных турбин ГТД различного назначения с высокими начальными параметрами, большими неравномерностями полей температуры, скорости, плотности в потоке газа важной является проблема снижения термических напряжений в пере лопатки путем уменьшения неравномерности температуры. Уже при начальной температуре газа Г = 1500 К минимальное значение местного коэффициента запаса прочности может достигнуть своего допустимого значения в самой холодной точке поперечного сечения пера. Наиболее горячие части лопатки — кромки, а наиболее холодные — средние части выпуклой и вогнутой поверхностей с минимумом температуры nmin перемычке между охлаждающими каналами. Традиционный метод уменьшения температурной неравномерности заключается в снижении температуры кромок двумя основными способами интенсификацией теплообмена в кромочных каналах турбулизаторами течения (ребрами, лунками, закруткой, струйным натеканием на стенку, пульсирующей подачей охладителя и т. п.) или понижением температуры воздуха, охлаждающего кромки, путем спутной закрутки или в теплообменнике. Эффективным может быть выдув охладителя на поверхность пера. Однако в авиадвигателях выдув может затруднять отключение охладителя на крейсерских режимах полета самолета. В ГГУ, работающих на тяжелых сортах топлива, происходит отложение твердых частиц на перфорирюванной поверхности, что приводит к  [c.366]

Охлаждение жидкого хладагента перед регулирующим вентилем. Для сокращения необратимых потерь при дросселировании применяют переохлаждение жидкости перед регулирующим вентилем, Понизить температуру жидкого хладагента ниже температуры конденсации можно как в самом конденсаторе, гак и с помощью холодной (артезианской) воды в специальных противо-точных охладителях. Кроме того, фторированные хладагенты охлаждают в рекуперативных теплообменниках за счет перегрева пара, выходящего из испарителя. Необходимо отметить, что охлаждение жидкого хладагента перед регулирующим вентилем всегда снижает потери от дросселировашш. Целесообразность применения каждого из способов снижения дроссельных потерь требует оценки экономической эф4)ективности.  [c.133]

По конструкции воздухомасляные охладители представляют собой систему труб с рядовым или шахматным расположением. Снаружи трубы имеют накатанные алюминиевые ребра или стальные гофрированные пластины, которые предназначены для увеличения площади теплоотдачи. По числу проходов жидкости охладители подразделяют на однопроходные, двухпроходные и четырехпро-ходные. В двухпроходных теплообменниках трубы имеют U-образный изгиб, а коллекторы расположены с одной стороны, что удобно для компоновки трубопроводов гидросистем.  [c.291]

Охладителем в теплообменнике является вода — рабочее тело нижней ступени установки, использующей теплоту, полученную ртутью в котле. Теплота, переданная воде ртутью, расходуется на образование водяного пара (процесс Зв в в), который расщиряется в турбине (процесс 1в2в, при наличии пароперегревателя — Г 2") до давления, создаваемого в конденсаторе. В конденсаторе теплота отдается холодному источнику (внещней среде), и пар конденсируется (процесс 2вЗв)-  [c.72]

Следует обратить внимание на то, что при заданной или выбранной температуре предварительного охлаждения Т р значение Т, а следовательно, и определено только условиями полноты теплообмена в охладителе ОХ. В то же время значения Тз и з должны быть найдены из уравнения баланса энергий для подсистемы, ограниченной на схеме рис. 8.17,6 штриховой линией, включающей предварительный теплообменник ПрТ. Таким образом, величина ц р зависит от свойств рабочего тела, давления сжатия и расширения, температуры Т р притока теплоты из окружающей среды и условий теплообмена (недоре-куперациями) в теплообменниках установки.  [c.314]

Протекторы могут применяться для внутренней защиты водоподогре-вателей (см. раздел 21), резервуаров питательной воды для котлов, корпусов фильтров, охладителей, трубчатых теплообменников, конденсаторов, резервуаров для нефти (мазута), водозаборных сооружений, дюкеров для сточных вод (канализационных коллекторов), камер шлю-  [c.379]


Смотреть страницы где упоминается термин Теплообменник-охладитель : [c.17]    [c.475]    [c.154]    [c.458]    [c.29]    [c.264]    [c.162]    [c.43]    [c.113]    [c.379]    [c.15]    [c.306]    [c.67]    [c.177]    [c.139]    [c.404]   
Техническая термодинамика. Теплопередача (1988) -- [ c.428 ]

Техническая термодинамика Изд.3 (1979) -- [ c.456 ]



ПОИСК



Охладители

Промывка фильтров, охладителей наддувочного воздуха и теплообменников

Теплообменник-охладитель рекуперативный

Теплообменники

Теплообменники (см. также Подогреватели, Охладители, Холодильники)

Теплообменники (см. также Подогреватели, Охладители, Холодильники) аммиачных холодильных установо

Теплообменники (см. также Подогреватели, Охладители, Холодильники) водных теплоносителей

Теплообменники (см. также Подогреватели, Охладители, Холодильники) диссоциирующего теплоносител

Теплообменники (см. также Подогреватели, Охладители, Холодильники) для подогрева рассола

Теплообменники (см. также Подогреватели, Охладители, Холодильники) нитрит-нитратных рассолов

Теплообменники (см. также Подогреватели, Охладители, Холодильники) при применении

Теплообменники (см. также Подогреватели, Охладители, Холодильники) расплава селитр



© 2025 Mash-xxl.info Реклама на сайте