Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кармана Напряжения критические

Рассуждения Т. Кармана сводились к тому, что для пластин, которые являются очень тонкими по сравнению с другими размерами, нагрузка, которую может выдержать пластина до момента потери устойчивости, пренебрежимо мала по сравнению с нагрузкой, которую могут выдержать две узкие полоски пластины с приведенной шириной X, примыкающие к ее боковым сторонам и искусственно удерживающие ее от потери, устойчивости до тех пор, Пока сжимающее напряжение в них не достигнет предельной величины о, которая может представлять собой наименьшее из двух напряжений критического а = Ог для ребра, к которому прикрепляются стороны пластины, и предела текучести а = Ту материала пластины.  [c.300]


На самом деле, как будет показано ниже, разгрузка происходит, по не сразу, как в схеме Кармана, а постепенно пока прогибы малы, зона разгрузки мала, она растет с ростом прогиба. Критическое напряжение (4.10.1) соответствует началу процесса выпучивания, когда эффект разгрузки еще не проявился. На рис. 4.10.1 приведена и вторая кривая, рассчитанная по уравнению (4.10.1). Опытные точки ложатся ближе к этой второй кривой.  [c.139]

Здесь С1У = м (л ) — поперечные бифуркационные смещения стержня а — критическое напряжение сжатия F, J — площадь и момент инерции поперечного сечения К — приведенный модуль (модуль Кармана), зависящий от механических свойств материала и геометрических характеристик сечения стержня. Для прямоугольного сечения  [c.135]

Вообще говоря, величина циркуляции вокруг профиля определяется напряжением вихрей, сошедших в начальной стадии движения или в течение времени, когда изменялись скорость или положение, но кроме того величина циркуляции подвергается небольшим колебаниям. Вихри пограничного слоя уходят назад в завихренную область и образуют вихри Кармана чтобы сохранить эту систему, с верхней и нижней поверхностей крыла сходят поочередно вихри противоположных знаков. Вследствие того, что сумма циркуляции вокруг Профиля и удвоенных напряжений всех вихрей системы должна равняться нулю, циркуляция вокруг профиля будет колебаться между пределами к, где — средняя циркуляция, а к — напряжение вихрей. У хороших профилей вихревая область при малых углах атаки мала и слаба и циркуляция вокруг профиля практически постоянна, но когда положение профиля приближается к критическому углу или переходит его, колебания в величине циркуляции могут составить значительную часть от средней циркуляции.  [c.91]

Как видно, приведенный модуль зависит не только от материала, но и от формы поперечного сечения. Теперь можно рассматривать потерю устойчивости сжатого стержня совершенно так же, как потерю устойчивости в упругой области ( 136). В дифференциальном уравнении изгиба (136.1), полученном на основе соотношения (139.7) между моментом и кривизной, в соответствии с (139.8) нужно будет заменить модуль упругости Е модулем Кармана К. В результате для критического напряжения вместо формулы (139.1) получается следующая  [c.310]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]


Эта зависимость аналогична зависимости в случае соблюдения закона Гука, с той лищь разницей, что вместо модуля упругости Е = Еа входит величина Ег, которую называют приведенным модулем упругости Энгессера — Кармана. Таким образом, по Энгессеру—Карману определение критической силы и критических напряжений может производиться по формулам, выведенным для материала, подчиняющегося закону Гука, с заменой в этих формулах модуля упругости материала на приведенный модуль упругости  [c.369]

Так как определение величины , зависящей от исходного критического напряжения, связано с большими вычислительными трудностями, формула Энгессера — Кармана не нашла применения в практических расчетах, тем более, что она приводит к завышенным значениям критических напряжений по сравнению с опытными.  [c.462]

Поскольку в течение почти 15 лет после того, как теория была предложена, оказалось невозможным определить либо е х, t), либо v x, t) в процессе распространения волн, до 1956 г. был принят менее обоснованный подход, состоявший в том, что предположительно принималась некоторая определяющая функция отклика и сравнивались результаты вычисления, выполненные при ее использовании со вторичными эффектами, поддававшимися измерению. Вначале функцию состояния принимали в виде квазистатической функции напряжение — деформация, мало интересуясь тем, откуда она получена. Фон Карман заметил (von Karman [1942, 1]), что поскольку функция напряжение — деформация, записанная в условных напряжении и деформации, достигает максимума при предельном напряжении, где касательная к соответствующему графику горизонтальна, что дает нулевую волновую скорость, должна существовать согласно формуле (4.38) предельная скорость Vi. Она теперь известна как критическая скорость фон Кармана , при превышении которой наступает разрушение.  [c.220]

Как и в ранних экспериментах, описанных выше, можно было построить кривые потерянной энергии удара как функции скорости удара. Однако в опытах Хопмана эти кривые использовались для того, чтобы выяснить, уменьшалась ли быстро энергия при скоростях выше Vi (критической скорости фон Кармана), как ожидалось согласно теории. По наклону касательных к квазистатическим кривым напряжение — деформация для сильно тянутого поликристалла, который он изучал, скорость Vi имела значение 47,3 фут/с (15,5 м/с).  [c.221]

Эта точка зрения разделяется далеко не всеми. Так, A.A. Вакуленко и Л.М. Качанов полагают, что доводы физического характера в пользу схемы полной пластичности продиктованы скорее заманчивой простотой математического анализа, нежели существом вопроса (см. Вакуленко A.A., Качанов Л.М. Теория пластичности/ В кн. Механика в СССР за 50 лет. Т. 3. Механика деформируемого твердого тела. М. Наука, 1972. С. 100). Тем не менее они замечают, что решения, полученные по схеме полной пластичности, могут иметь несомненный интерес, полемизируя при этом с Р. Хиллом, критически оценившим условие полной пластичности Хаара—Кармана как искусственное и нереальное условие текучести (см. Хилл Р. Математическая теория пластичности. М. Гостехиздат, 1956. С. 320, 321). Не вызывает возражений высказываемая ими мысль о том, что ценность того или иного решения пространственной задачи устанавливается возможностью либо построить согласованное кинематически допустимое поле, либо продолжить поле напряжений в жесткие зоны, не нарушая условия текучести. В противном случае вопрос о значимости решения остается открытым. Ясно, что исключительную ценность представляют полные решения, когда удается построить согласованное кинематически допустимое поле и продолжить поле напряжений в жесткие зоны, не нарушая условия текучести. Таким образом, неполные решения обладают лишь относительной ценостью, а полные — абсолютной. На практике, однако, чаще всего удается построить неполное поле напряжений (поле напряжений в пластической зоне) и возникает проблема его продолжения в жесткую зону так, чтобы в жесткой зоне и на границе раздела выполнялись условия равновесия и не превышался предел текучести. Общая процедура такого продолжения (или хотя бы существование такого продолжения) для сколько-нибудь широкого класса задач в настоящее время неизвестны. Учитывая все сказанное, нетрудно заключить, что по большому счету неполные решения с теоретической точки зрения вообще никакой ценности не представляют. Однако их практическая ценность часто может быть очень высокой. Так, или иначе, но большинство прикладных задач решены по жесткопластической схеме не полно.  [c.14]



Смотреть страницы где упоминается термин Кармана Напряжения критические : [c.225]    [c.82]    [c.488]    [c.422]    [c.796]    [c.299]    [c.82]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.82 , c.84 , c.85 ]



ПОИСК



Кармана

Напряжение критическое при



© 2025 Mash-xxl.info Реклама на сайте