Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теории пластичности предельных нагрузок

При выводе формул для предельных нагрузок были использованы условия пластичности по теории максимальных касательных напряжений и энергетической теории. Выбирали ту формулу, которая давала более простые зависимости. Эксперименты показали, что результаты расчетов по этим теориям одинаково хорошо согласуются. В частности, на рис. 7-1,а представлены предельные давления для трубчатых образцов, определенные опытным путем и по обеим теориям (сплошные линии). Экспериментальные значения находятся между расчетными по обеим теориям.  [c.360]


Деформация развивается следующим образом при относительно малых нагрузках тело остается жестким, с возрастанием нагрузок в некоторый момент сразу образуется область пластических деформаций, возникает течение тела при достигнутой нагрузке. Последняя называется предельной, нагрузкой, она характеризует несущую способность тела и представляет большой интерес для оценки прочности. Разыскание предельных нагрузок составляет одну из главных задач теории пластичности.  [c.85]

Усталостная трещина распространяется до тех пор, пока она не достигнет длины, достаточной для начала заключительной стадии нестабильного разрушения. Критерии начала этой завершающей стадии различны для хрупкого и пластического состояний. В одном случае они определяются либо на основании критериев линейной и нелинейной механики разрушения, с учетом изменения свойств материала в процессе действия переменных нагрузок, в другом на основании предельного состояния теории пластичности.  [c.18]

При выводе формул для предельных нагрузок использованы условия пластичности по теории максимальных касательных напряжений. Эксперименты показали, что результаты расчетов применительно к котельным конструкциям и используемым для их изготовления сталям одинаково хорошо согласуются с теорией максимальных касательных напряжений и с энергетической теорией прочности. Но формулы, исходящие из теории максимальных касательных напряжений, получаются проще. Экспериментальные значения для предельных давлений по переходу всей конструкции в пластическое состояние и по разрушающим нагрузкам находятся между расчетными по обеим теориям.  [c.319]

Важнейшими проблемами в науке о сопротивлении материалов, которые разрешались в течение этого периода и в последующие годы вплоть до настоящего времени, являются 1) расчеты на динамическое действие нагрузок 2) дальнейшее усовершенствование методов расчета на устойчивость 3) расчеты оболочек и тонкостенных стержней 4) развитие теории пластичности 5) установление новых критериев прочности и в том числе расчеты по предельным состояниям 6) исследование влияния высоких и низких температур на механические свойства материалов 7) разработка методов расчета конструкций, выполненных из полимеров .  [c.564]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]


В книге подробно излагаются основные уравнения теории пластичности, причем подчеркивается значение теории пластического течения. Систематически используется концеиция жестко-пласги-ческого тела, плодотворность которой убедительно показана во многих работах последних лет. Большое место уделено энергетическому методу вычисления предельных нагрузок, разрывным решениям, решениям с изолированными линиями скольжения теоретическое и прикладное значение этих новых результатов бесспорно.  [c.6]

Принципиально иной подход к определению деформаций, напряжений и смещений в условиях приспособляемости упругоидеальнопластической конструкции (лишенный указанных недостатков, но более трудоемкий) развит В. А. Икриным [30, 31, 33]. Исходя из соотношений инкрементальной теории пластичности, при заданных интервалах изменения нагрузок определяется область допустимых состояний конструкции, в которой отыскивается траектория деформирования, доставляющая максимум перемещению рассматриваемой точки (при некоторых программах нагружения оказывается возможным найти точное значение перемещения). Весьма существенно, что данный метод (в отличие от рассмотренных выше) дает конечные значения для перемещений при нагрузках, сколь угодно близких к-предельным по приспособляемости. Его использование позвол ило на примере простейших конструкций установить некоторые особенности процесса приспособляемости (например, возможное несовпадение программ нагружения, определяющих минимальные параметры предельного цикла и максимальные накопленные деформации [30, 33]).  [c.33]

В нашей стране развитие теории пластичности началось в тридцатые годы работами С. Л. Соболева (1935), С. А. Христиановича (1936), С. Г. Михлина (1938), которые исследовали некоторые задачи для упруго-пластического и жестко-пластического тел. Важное значение имели работы А. А. Гвоздева (1934, 1938), в которых был предложен метод верхней и нижней оценок для предельных нагрузок на жестко-пластическое тело. Этот метод интенсивно разрабатывался в дальнейшем и лег в основу расчетов прочности на основе кинематически возможных полей скоростей и статически допустимых полей напряжений.  [c.392]

Задачи другого типа, характеризуемые малыми деформациями,— это задачи о предельных нагрузках, тесно связанные с решением вопросов прочности. Здесь области пластической деформации для жестко-пластического и упруго-пластического тел могут, конечно, заметно различаться. Однако для нахождения предельных нагрузок схема жестко-пластического тела вполне пригодна обоснование этого утверждения будет дано в гл. VIII, посвященной экстремальным принципам теории пластичности.  [c.133]

Достижения теории упругости, теории пластичности и механики материалов стали широко применяться в практике проектирования. Однако основная тенденция развития сопротивления материалов, на наш взгляд, состоит в расширении его физической базы, усложнении и усовершенствовании простейших моделей деформируемого тела, применительно к которым развиваются те или иные расчетные схемы. Поэтому автору казалось совершенно необходимым написать занойо главу о физических основах прочности на основе дислокационных представлений, уделить значительно большее внимание основам теории пластичности, посвятить специальный раздел теории предельного равновесия. Вопросы динамики, включая теорию упругих колебаний, действие ударных и импульсивных нагрузок и начальные сведения о распространении волн, также являются, на взгляд аэтора, необходимой частью современного курса сопротивления материалов. Расчеты на прочность при высоких температурах поставлены в настоящее время на надежную основу, и в книгу включена соответствующая глава.  [c.9]

НЕСУЩАЯ СПОСОБНОСТЬ, понятие пластичности теории. Н. с. характеризуется предельной комбинацией нагрузок, при к-рых начинается неограниченное возрастание пластич. деформации конструкции из идеально-пластич. материала. Во многих случаях имеет смысл рассматривать И. с. жёстко-пластических тел. Использование Н. с. для установления допустимых нагрузок приводит к уменьшению металлоёмкости конструкций. НЁТЕР ТЕОРЕМА, фундаментальная теорема физики, устанавливающая связь между св-вами симметрии физ. системы и сохранения законами. Сформулирована нем. математиком Э. Нетер (Е. Noether) в 1918. Н. т. утверждает, что для физ. системы, ур-ния движения к-рой имеют форму системы дифф. ур-ний и могут быть получены из вариационного принципа механики, каждому непрерывно зависящему от одного параметра преобразованию, оставляющему инвариантным действие (S), соответствует закон сохранения. Из условия обращения в нуль вариации действия, 05=0 (наименьшего действия принцип), получаются ур-ния движения системы. Каждому преобразованию, при к-ром действие не меняется, соответствует дифф. закон сохранения. Интегрирование ур-ния, выражающего такой закон, приводит к интегральному закону сохранения. И. т. даёт наиб, простой и универсальный метод получения законов сохранения в классич. и квант, механике, в теории полей и т. д.  [c.466]



Смотреть страницы где упоминается термин Теории пластичности предельных нагрузок : [c.268]    [c.201]    [c.9]    [c.32]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.70 , c.71 ]



ПОИСК



Нагрузка предельная

ПЛАСТИЧНОСТЬ Теории пластичности

Пластичность нагрузках

Теория пластичности



© 2025 Mash-xxl.info Реклама на сайте