Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия в грунтах

Рис. 366. Размещение контрольных образцов для наблюдения за эффективностью катодной защиты трубопровода от коррозии в грунте Рис. 366. Размещение контрольных образцов для наблюдения за <a href="/info/148543">эффективностью катодной защиты</a> трубопровода от коррозии в грунте

Этот критерий можно по-видимому объяснить тем обстоятельством, что свободный потенциал коррозии в грунте по медносульфатному  [c.102]

Для подземных строительных сооружений транспортного назначения после эксплуатации в течение 100 лет в грунтах класса I уменьшением толщины стенки тоже можно практически пренебречь. При работе в грунтах класса II уменьшение толщины стенки может быть компенсировано соответствующим ее увеличением (запасом на коррозию). В грунтах класса III приходится принимать в расчет повышенную опасность коррозии.  [c.142]

При местной коррозии существенное значение имеет отношение площадей катода и анода [см. правило, описываемое формулой (2.43)]. Испытания на коррозию в грунте проводят обычно на сравнительно небольших образцах. Так, площадь образцов при полевых испытаниях, проводившихся в США Р7], составляла 182 и 365 см . При этом в пределах корродирующей поверхности могли образовываться микроэлементы с рас-  [c.143]

Процесс коррозии в грунте развивается быстро при проникновении воздуха в грунт, так как кислород воздуха способствует микробиологическим процессам. Размеры частиц грунта влияют на его воздухопроницаемость. Песчаные грунты вследствие высокой воздухопроницаемости обладают обычно окислительными свойствами, а глинистые — восстановительными. В результате неравномерного проникновения воздуха к подземному сооружению по его длине возникают гальванические пары. Катодными участками этих пар, как правило, будут хорошо аэрируемые участки, а анодными — мало аэрируемые.  [c.8]

Для дополнительного ознакомления с вопросами, связанными с коррозией в грунтах, рекомендуется литература [1, 6, 7, 81.  [c.148]

С кислородной деполяризацией корродируют металлы, нахо-дяш,иеся в атмосфере (например, ржавление металлического оборудования заводов) металлы, соприкасающиеся с водой и нейтральными водными растворами солей (например, металлическая обшивка речных и морских судов, различные охладительные системы, в том числе охладительные системы доменных, мартеновских и других печей, охлаждаемые водой шейки валков блюмингов) металлы, находящиеся в грунте (например, различные трубопроводы) и др. Коррозия металлов с кислородной деполяризацией является самым распространенным коррозионным процессом.  [c.230]

Многие металлические конструкции, такие, как нефтепроводы, газопроводы, водопроводы, канализационные сети, обсадные трубы скважин, силовые электрические кабели, кабели связи, баки и емкости, тюбинги метро, сваи и другие строительные конструкции, эксплуатируются в подземных условиях и, соприкасаясь с почвой (верхним слоем горных пород) или грунтом (нижележащими горными породами), подвергаются коррозионному разрушению. Особо сильное разрушение наблюдается у подземных сооружений, находящихся в зоне действия блуждающих токов. Приближенные подсчеты показывают, что вследствие коррозии в нашей стране ежегодно выходит из строя 2—3% подземных сооружений, что составляет около одного миллиона тонн металла.  [c.384]


Грунтовые условия, в которых эксплуатируются металлические сооружения, весьма неодинаковы. Скорость коррозии металлов в грунте в значительной степени зависит от состава грунта, его влагоемкости (т. е. способности удерживать влагу) и воздухопроницаемости и определяется кинетикой электродных процессов, а в случае работы протяженных коррозионных пар также и омическим сопротивлением грунта. Следует отметить следующие основные факторы, определяющие скорость и характер грунтовой коррозии металлов  [c.386]

Кислотность грунта, которая характеризуется колебаниями pH в пределах от 9 до 3, ускоряет коррозию в результате повыше-  [c.387]

При наличии коррозии в результате работы макропар характер влияния изменения условий на скорость грунтовой коррозии металлов может существенно измениться. Так, если при работе микропар плотные, воздухонепроницаемые грунты являются наименее агрессивными, то при работе макропар неравномерной аэрации наибольшей коррозии подвергаются участки протяженных металлических конструкций (например, трубопроводов), находящихся именно в этих грунтах.  [c.390]

Переменный блуждающий ток также опасен, но скорость разрушения им металлов в несколько раз меньше, чем постоянным током. Вследствие диффузионного ограничения скоростей электродных реакций материальный эффект коррозии металлов блуждающими переменными токами в грунтах меньше, чем в жидких электролитах (растворах).  [c.391]

Подземные металлические конструкции в грунте подвергаются прямому коррозионному воздействию грунта. Особенно сильное разрушение наблюдается в условиях совместного воздействия грунта и блуждающих токов. Наличие в грунте влаги способствует протеканию коррозии по электрохимическому механизму и возникновению коррозионных элементов.  [c.184]

Различие в природе электролитов может создать разность электродных потенциалов металлов в 0,3 в. Имеются указания, что различие в степени аэрации вызывает еще большую э. д. с., равную 0,9 в. Все эти причины, а в ряде случаев действие находящихся в грунте микроорганизмов способствуют разрушению подземных металлических сооружений. Развитию коррозии подземных сооружений также способствует наличие на их поверхности прокатной окалины. В отдельных случаях разность потенциалов между окалиной и основным металлом достигает 0,45 в. На процессы подземной коррозии оказывают влияние самые разнообразные факторы, к числу которых относятся, помимо указанных выше, температура, электропроводность, воздухопроницаемость грунта, состав грунтовых вод и др. Поэтому очень трудно выделить и изучить влияние каждого фактора в отдельности.  [c.184]

Наиболее важными ионами, находящимися в грунтах и влияющими на скорость коррозионного процесса, являются СП, N0 50 , НСО , Са +, Mg +, К+, На+. Органические соединения, в особенности фенолы и органические кислоты, образующиеся в почве в результате бактериальных процессов, усиливают коррозию. Некоторое значение при оценке коррозионной опасности имеет кислотность грунта. Очень кислые грунты, у которых pH  [c.185]

КОРРОЗИЯ КОНСТРУКЦИОННЫХ МЕТАЛЛОВ И СПЛАВОВ В ГРУНТЕ  [c.191]

Из табл. 9.1 видно, что медь в среднем корродирует со скоростью, равной Ve скорости коррозии железа, однако в грунте зоны прилива медь корродирует быстрее (скорость коррозии около скорости коррозии железа). В агрессивных почвах Калифорнии медь корродирует со средней скоростью. Питтинг незначительный, глубина поражений не превышает 0,15 мм.  [c.184]

Подзолистые почвы наиболее агрессивны. При 4 — 5-летних испытаниях скорость коррозии стали и цинка в подзолах в 5 раз, меди в 8 раз и свинца в 20 раз превышала среднюю скорость коррозии в 13 различных грунтах.  [c.185]

Использование засыпки для магниевых анодов обеспечивает определенное преимущество. Оно заключается как в уменьшении сопротивления покровной пленки продуктов коррозии, таких как Mg(OH)j, так и в увеличении проводимости окружающей среды. Засыпка может состоять, например, из 20 % бентонита (неорганического коллоида, применяемого для поглощения влаги), 75 % гипса и 5 % Na SOi- Иногда засыпку заранее упаковывают в окружающую анод оболочку, для того чтобы одновременно поместить анод и засыпку в грунт.  [c.224]

Наиболее стойки в грунтах сплавы алюминия с содержанием магния 2,5—3,5 %. Скорость коррозии алюминиевого сплава с 3,5 % магния составила 3 г/ (м год), но при наличии блуждающих токов скорость коррозии возрастала до 30 г/ (м год).  [c.48]


При прокладке сооружений в условиях возможной микробиологической коррозии при наличии блуждающих токов промышленной частоты на участках сооружений с температурой транспортируемого продукта от 293 до 333 К в грунтах с удельным сопротивлением менее 10 Ом-м или содержанием водорастворимых солей более 1 г на 1 кг грунта  [c.75]

После отключения тока образец извлекают из банки, очищают от продуктов коррозии и грунта деревянным шпателем, промывают в дистиллированной воде и затем подвергают катодному травлению в 87о-ном растворе гидрата окиси натрия при силе тока 2—3 А до полного удаления продуктов коррозии (при травлении резиновые пробки на торцах не извлекают). После травления образец промывают дистиллированной водой, высушивают и взвешивают с погрешностью не более 0,1 г. Результаты заносят в журнал и вычисляют потерю массы.  [c.101]

Наиболее широкая серия полевых испытаний различных металлов и покрытий практически во всех типах почв была начата в 1910 г. К. X. Логэном из Национального бюро стандартов. Эти испытания продолжались до 1955 г. и сейчас являются наиболее значительным источником информации о коррозии в грунтах [7]. Испытания показали малое различие скоростей коррозии различных чугунов и сталей в одном и том же грунте, что было подтверждено пятилетними испытаниями, проведенными в Великобритании [9]. В табл. 9.1 приведены некоторые типичные значения скоростей коррозии, усредненные для различных грунтов. Кроме того, в этой таблице представлены данные по скорости коррозии стали в двух агрессивных типах почв и одном относительно неагрессивном, чтобы показать, насколько велики различия в коррозии в разных грунтах.  [c.184]

При проведении коррозионных испытаний в натурных условиях обычно фиксируются изменение внешнего вида (характер коррозии), изменение среды (глубина проникновения продуктов коррозии в грунт), глубины максимальных поражений, число сквозных проржавлений (время до появления первого и кинетика их развития во времени), потенциал металла и его изменение по длине (высоте, периметру) сооружения (для морских и подземных сооружений) плотность токов утечки (для подземных и морских сооружений), изменение химического состава среды (для замкнутых систем).  [c.50]

Лакокрасочные покрытия толщиной, обычно применяемой для защиты от атмосферной коррозии, в грунтах разрушаются в течение нескольких месяцев. Целесообразно наносить толстослойные покрытия на основе каменноугольной смолы с добавками армирующих пигментов или неорганических волокон для уменьше-Н1ГЯ текучести покрытия при обычных температурах. Указанные  [c.147]

Микроорганизмы, находящиеся в большом количестве в почвах и грунтах, могут вызывать значительное местное ускорение коррозии металлов, в частности стали (рис. 278). Наибольшую опасность представляют анаэробные сульфат-редуцируюш,ие бактерии, которые развиваются в илистых, глинистых и болотных грунтах, где возникают анаэробные условия. Зти бактерии в процессе жизнедеятельности восстанавливают содержащиеся в грунте сульфаты, потребляя образующийся при катодном процессе водород, до сульфид-ионов с выделением кислорода  [c.388]

Цинк подвержен коррозии в большинстве грунтов. В грунтах, с кислой реакцией цинк непригоден. Однако цинковое покрытие по стали, но сравнению с другими металлическими покрытиями,, является более эффективным в грунтовых условиях, так как, ИОМ1ГМО механической защиты, оно защищает конструкцию электрохимически. Медиоцпиковые сплавы тем больше подвержены коррозии, чем больше в них содержание цинка. Латуни с высоким содержанием цинка в условиях грунтовой корро иш склонны к обесципкованию.  [c.194]

К числу недостатков цинкового протектора относится возрастание при некоторых условиях иереходного сопротивления между протектором и окружающей его средой, вследствие чего действие протектора ослабевает. Объясняется это тем, что поверхность цинка в процессе работы покрывается слоем нерастворимых в воде продуктов коррозии, которые изолируют протектор от окружающего электролита. Чтобы снизить переходное сопротивление между протектором и грунтом создают вокруг протектора определенную искусственную среду, которая повышает эффективность его работы. Это достигается погружением протектора в специальную смесь солей, называемую наполнителем. Иепосредственное погружение протектора в грунт менее эффективно, чем в наполнитель.  [c.301]

Масляные грунты наносят непосредственно на металлическую поверхность. Их назначение — надежная защита металлов от коррозии и упрочнение сцепления лакокрасочного покрытия с окрашиваемой поверхностью. Лакомасляные грунты получают смешиванием масляного лака с пигментом. Количество пигмента в грунтах не превышает 40% от веса лака.  [c.401]

Влияние аэрации на подземную коррозию обобщено Романовым [7] В хорошо аэрируемых грунтах скорость питтингообра-зования быстро падает от высоких начальных значений, вследствие окисления железа и образования на поверхности металла гидроксида железа, обладающего защитными свойствами и снижающего скорость питтингообразования. С другой стороны, в плохо аэрируемых грунтах начальная скорость питтингообразования снижается очень медленно. В этом случае неокисленные продукты коррозии диффундируют вглубь почвы и практически НС защищают металл от дальнейшего разрушения. Агрессивность почвы влияет также на наклон кривой зависимости глубины пит-тинга от времени. Так, даже в грунтах с хорошей аэрацией избыточная концентрация растворимых солей будет препятствовать об-  [c.182]

Изменение агрессивности грунта. В грунтах с высоким содержанием органических кислот можно окружить металлические конструкции известняковым щебнем. В некоторых грунтах, способных вызвать микробиологическую коррозию, трубы засыпали слоями мела (СаСОз).  [c.188]

К материалам труб, коллекторов и их соединениям предъявляется целый ряд требований. Они должны быть прочными, воспринимать без деформаций постоянную нагрузку от веса грунта и временную от движущегося транспорта, не подвергаться быстрому истиранию, быть устойчивыми к коррозии, иметь гладкую внутреннюю поверхность, быть водонепроницаемыми, не допуская при этом просачивания сточных вод в грунт (эксфильтрация) и грунтовых вод — в сеть (инфильтрация).  [c.215]


Потенциал защищаемой конструкции при котором ток коррозии практически равен нулю, называют защитным потенциалом (Езащ.). Практически стальные подземные сооружения становятся защищёнными, если потенциал равен минус 0,55В по водородному электроду сравнения, или минус 0,85В по МСЭ. Эта величина принята как критерий минимального защитного потенциала (Es.min). Однако указанный минимальный потенциал достаточен только в случае если отсутствует микробиологическая коррозия. При наличии в грунте СВБ (сульфатвосстанавливающих бактерий) потенциал должен быть более отрицательным, равным минус 0,95В.  [c.6]

Электродренажная защита сооружений от коррозии, вызываемой блуждающими токами. Блуждающие токи возникают в основном при работе электрифи-а1ированного транспорта (железная дорога, трамвай) и линий электропередачи постоянного тока по системе провод — земля. Особую опасность поедставляют блуждающие токи от источников постоянного тока. Один ампер тока уносит около 10 кг железа в год. Блуждающие токи, которые собираются трубопроводом, достигают сотен ампер. Поэтому коррозионные поражения, обусловленные воздействием блуждающих токов, могут возникнуть уже на стадии строительства. Это объясняет важность принятия мер защиты от блуждающих токов с -момента укладки сооружения в грунт.  [c.77]


Смотреть страницы где упоминается термин Коррозия в грунтах : [c.103]    [c.45]    [c.13]    [c.15]    [c.8]    [c.187]    [c.188]    [c.193]    [c.194]    [c.195]    [c.196]    [c.196]    [c.7]    [c.185]    [c.11]    [c.39]   
Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.196 ]



ПОИСК



Влияние характера грунтов и их состава па коррозию металВлияние блуждающих токов

Грунт

Коррозия конструкционных металлов и сплавов о грунте

ПОЧВЫ И ГРУНТЫ КАК КОРРОЗИОННАЯ СРЕДА КОРРОЗИОННЫЕ ИССЛЕДОВАНИЯ И ИЗМЕРЕНИЯ Влияние состава и свойств почв и грунтов на развитие процесса коррозии



© 2025 Mash-xxl.info Реклама на сайте