Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики материалов повторных нагрузок

Механические испытания материалов отличаются большим разнообразием по характеру нагрузки различают испытания статической, динамической и повторно-переменной нагрузками по виду деформации испытуемого образца — испытания на растяжение, сжатие, кручение, изгиб, сложное сопротивление. Наиболее распространены испытания статической нагрузкой, а из них — испытания на растяжение, осуществляемые наиболее просто и позволяющие получить весьма полные и надежные данные о механических характеристиках материала.  [c.195]


Отсюда следует, что левый верхний участок кривой Веллера не всегда можно использовать для характеристики малоцикловой усталости того или иного материала. Если условия службы деталей и узлов таковы, что они испытывают сравнительно редкие перегрузки (например, маневренные перегрузки или перегрузки от порывов ветра в самолетных конструкциях, повторные нагрузки, связанные с суточными изменениями температуры в корпусах, находящихся под внутренним давлением и т. д.), то сопротивление малоцикловой усталости следует оценивать при низкочастотных испытаниях. В связи с этим в отечественной литературе [14, 16], наряду с термином малоцикловая усталость , можно встретить термины статическая выносливость и прочность при повторных статических нагрузках — термины, отражающие специфические особенности процесса уставания, связанные с малой скоростью изменения повторной нагрузки.  [c.84]

Предел текучести характеризует область упругой деформации материала и потому является важнейшей конструкционной характеристикой материала, используемой при расчетах на прочность, особенно в тех случаях, когда отсутствуют повторно-переменные нагрузки. Весьма велико значение предела текучести также для конструкций, у которых нарушение прочности определяется потерей продольной устойчивости в пластической области.  [c.326]

И. А. Одингу и его сотрудникам принадлежит ряд работ по изучению причин возникновения явления усталости и установлению критерия прочности металлов при повторно-переменных напряжениях эти исследования приве.ти к разработке ряда эффективных мероприятий по устранению разрушений деталей машин от усталости. В результате всестороннего изучения вопроса о так называемой циклической вязкости (способности материала, не разрушаясь, поглощать в необратимой форме за один цикл смены напряжений определённое количество энергии), как основной характеристики материала при повторно-переменных нагрузках, И. А. Одингом была выдвинута новая теория усталостного разрушения металлов (теория гистерезисной энергии).  [c.771]

Пример 93. Шток водяного насоса, представляющий собой ступенчатый круглый стальной стержень (рис. 597), подвергается повторно-переменному растяжению — сжатию усилиями, сопровождающимися динамическим приложением нагрузки с характеристикой цикла г — —0,5. Материал штока — малоуглеродистая сталь с временным сопротивлением а =400 МПа, пределом текучести Оу = 330 МПа и пределом усталости при симметричном цикле o i = = 204 МПа. Поверхность стержня обработана резцом. Определить допускаемые усилия, действующие на шток.  [c.680]


Характеристики цикла упругопластических деформаций можно определить по экспериментальным кривым циклического деформирования, полученным при малоцикловых испытаниях образцов из конструкционного материала в жестком или мягком режиме нагружения. Использование реальных диаграмм циклического деформирования для всего рассчитываемого диапазона чисел циклов нагружения позволяет учесть действительное поведение материала в условиях малоциклового термомеханического нагружения кинетику циклического деформирования, нелинейные эффекты при разгрузке-нагрузке в упругой области (упругий гистерезис), циклическое упрочнение, разупрочнение, стабилизацию эффект Баушингера в исходном (нулевом) полу-цикле нагружения и его изменение в процессе повторных нагружений циклическую анизотропию свойств материала.  [c.79]

Кратном повторении. Простейшее представление о причине этого можно составить, если учесть, что напряжение вводилось как результат осреднения внутренних усилий, распределенных неравномерно и беспорядочно между различными микрообъемами. При построении критериев прочности при статических однократных нагрузках по данным опытов эта микронеоднородность учитывается фактическим поведением материала при испытаниях. Но данные этих опытов и построенные по ним критерии прочности нельзя автоматически переносить на случаи повторяющихся нагрузок. Действительно, даже в случае деформирования тела в пределах упругости, когда повторное воспроизведение нагрузок приводит к повторяющейся картине напряженного и деформированного состояний, как статистически определенных характеристик, в малых областях тела, особенно при наличии дефектов внутри или на граничной поверхности тела (трещины, надрезы, инородные включения и т. п.), могут возникать локальные пластические деформации или микроразрушения, так что в этих областях локальное напряженное и деформированное состояние при повторном воспроизведении нагрузки будет уже другим. Накопление этих видоизменений в малых областях при повторении нагрузок может привести к развитию трещины разрушения. Отсюда ясна возможность так называемой усталости материала при периодических нагрузках.  [c.289]

Таким образом, гораздо легче, например, вдвое повысить длительность работы детали нри переменных нагрузках (при том же напряжении), чем повысить в 2 раза величину повторного напряжения, выдерживаемого деталью (при сохранении того же числа циклов). Выбор основной характеристики повышения усталостной прочности зависит прежде всего от требований к условиям работы детали, потому что в одних случаях важно увеличить число циклов (нанример, для увеличения ресурса деталей, работающих с перегрузками), в других важно повысить напряжение при том же числе циклов, наконец, иногда необходимо увеличить и то и другое. Усталостная прочность детали может быть значительно ниже (в 2—3 раза и более) усталостной прочности материала (рис. 24.9).  [c.267]

Испытания применяют для характеристики поведения материала как пластичного, так и хрупкого в условиях повторно-переменного приложения нагрузки. В таких условиях металлы обнаруживают более низкую прочность по сравнению с определяемой в статических испытаниях.  [c.149]

Существуют различные виды изнашивания усталостное, абразивное, адгезионно-механическое, эрозионное, коррозионно-механическое и др. Интенсивность изнашивания деталей машин зависит от формы, размеров, физико-химических свойств, условий нагружения и теплового режима работы контактирующих поверхностей, а также физико-химических свойств смазочного материала. В зубчатых передачах, подшипниках качения и некоторых других механизмах при работе возникает усталостное изнашивание (выкрашивание), характерное для хорошо смазанных контактирующих поверхностей деталей машин, которые испытывают повторные контактные напряжения и работают в режимах качения и качения со скольжением. Абразивное изнашивание возникает в результате режущего или царапающего действия твердых тел и частиц. Данный вид износа типичен для механизмов, функционирующих в запыленной среде, в условиях недостатка смазки, при работе всухую. В трущиеся контакты в процессе работы попадают частицы песка, пыли, грязи, продукты износа. Интенсивность абразивного изнашивания механизмов зависит от физико-механических и геометрических характеристик абразива, его количества, прочностных свойств материала трущихся тел, действующей нагрузки, состояния смазочного слоя. В местах контакта  [c.9]


Пример 89. Шатун поршневого двигателя, представляющий собой стержень круглого сечения, вдоль оси подвержен повторно-переменным нагрузкам, меняющимся без ударов от — + 20 ООО кгс до P , =+5000 кгс. Стержень имеет радиальное отверстие 0 3 мм, материал стержня — сталь 12ХНЗА с такими характеристиками прочности = 95 кгс/мм , а-г = 72 кгс/мм , а = 43 кгс/мм и Ч д=0,1. Поверхность шатуна грубо шлифованная. Требуется определить диаметр его из расчета на выносливость и полученные размеры сопоставить с найденными из расчета на статическую нагрузку, равную максимальной нагрузке цикла.  [c.614]

Поведение металлических материалов в условиях, когда низкочастотная составляющая нагружения, как правило, является расчетной и носит статический или повторно-статический характер, а дополнительные высокочастотные нагрузки и вибрация имеют несущественную но сравнению с расчетной нагрузкой амплитуду, изучено достаточно широко, особенно влияние поли-частотного (в частности, двухчастотного) на1ружения на усталостные характеристики. Показано, что и на стадии зарождения, и на стадии развития усталостных трещин наложение высокочастотной составляющей значительно со-крагцает циклическую долговечность материала. Причем результат воздействия такого нагружения превышает результат простого сложения амплитуд низкочастотной и высокочастотной нагрузок.  [c.98]

Допускаемые напряжения в сварных соединениях конструкций, работающих под повторно-переменными нагрузками, устанавливаются в завп-симости от коэффициента асимметрии (характеристики) цикла г, рода материала и велпчпны эффективного К оэффициента концентрацип напряжений р. Допускаемые напряжения в соединениях при переменных нагрузках устанавливаются умножением приведенных в таблицах цифр на коэффициент  [c.63]

Прочность при повторной статической нагрузке. На величину предела выносливости оказывает влияние характеристика цикла г = ап11п/0п,ах- Прочность при переменных нагрузках зависит также от частоты нагружений низкие частоты (несколько нагружений в минуту) оказывают более сильное действие, чем высокие (1000 нагружений в минуту), при том же количестве циклов удлинение периода цикла нагружения усиливает его эффект. Объясняется это тем, что пластическая деформация за период нагрузки при высокой частоте не успевает достигнуть величины, равной пластической (местной) деформации при низкой частоте нагрузки, г. е. за каждый цикл низкочастотной нагрузки накапливается большая пластическая деформация, чем за цикл высокочастотной нагрузки. Следовательно, необходимое число циклов нагрузки для полного использования способности материала к деформированию при низкой частоте оказывается значительно меньше, чем при высокой частоте.  [c.50]


Смотреть страницы где упоминается термин Характеристики материалов повторных нагрузок : [c.216]    [c.229]    [c.42]    [c.49]    [c.679]    [c.62]   
Сопротивление материалов (1959) -- [ c.75 ]



ПОИСК



Материал я а н а. . — Нагрузки

Материалы — Характеристики

Нагрузка повторная

Повторность



© 2025 Mash-xxl.info Реклама на сайте