Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полимеры теплостойкость

Большой интерес представляет создание клея на основе некоторых элементоорганических и неорганических полимеров. Теплостойкость такого клея—1000°С и выше [64].  [c.122]

Современная наука о теплозащитных материалах различает понятия теплостойкости и термостойкости полимеров. Теплостойкость — это та предельная температура, по достижении которой полимер теряет свою прочность под действием той или иной нагрузки. Под термостойкостью понимается предельная температура, при которой начинаются химические изменения в полимере, отражающиеся на его свойствах, т. е. происходит термическая или термохимическая деструкция полимера.  [c.140]


VI. Машины для определения физических свойств полимеров (теплостойкости, морозостойкости и др.)  [c.46]

Полимеры в зависимости от расположения и взаимосвязи макромолекул могут находиться в аморфном (с неупорядоченным расположением молекул) или кристаллическом (с упорядоченным расположением молекул) состоянии. При переходе полимеров из аморфного состояния в кристаллическое повышается их прочность и теплостойкость. Значительное влияние на полимеры оказывает воздействие на них теплоты. В зависимости от поведения при повышенных температурах полимеры подразделяют на термопластичные (термопласты) и термореактивные (реактопласты).  [c.427]

Клеи на основе кремнийорганических соединений и неорганических полимеров (в частности, ВК2) обладают теплостойкостью до 700... 1000 С, но меньшей прочностью и повышенной хрупкостью.  [c.79]

К недостаткам полимеров относят их низкую теплостойкость, см. таблицу 2.3.  [c.66]

Полистирол -твердый, жесткий, прозрачный, аморфный полимер. Удобен для механической обработки, хорошо окрашивается, растворим в бензоле. Недостатками являются невысокая теплостойкость, склонность к старению, образованию трещин. Набухает в бензине. Стоек к действию щелочей, солей, низших спиртов, минеральных масел. Полистирол марки Д имеет плотность 1,05 г/см массу 10 , Ств = 35.. 40 МПа, 2 = 0,6%. Очень хрупкий, но имеет исключительно высокие диэлектрические свойства и полную влагостойкость.  [c.130]

Наполнители могут быть волокнистые и порошкообразные. Основное назначение волокнистых наполнителей — увеличение механической прочности, уменьшение хрупкости. Волокна неорганические по сравнению с органическими повышают теплостойкость по Мартенсу и нагрево-стойкость. В качестве наполнителя часто применяется древесная мука — тонкоизмельченная древесина, однако сохраняющая свою волокнистость. Она применяется в пластмассах не очень высокого качества, но зато является самым дешевым волокнистым наполнителем. Более высококачественным наполнителем, чем древесная мука, являются древесная целлюлоза и не пригодные для текстильного производства хлопковые очёсы. Благодаря более чистому и более длинному волокну очесы обеспечивают при том же связующем большую механическую прочность прессованным изделиям и лучшие электрические параметры, чем древесная мука и целлюлоза. Детали с высокой механической прочностью получают при использовании в качестве наполнителя рубленой ткани. В этом случае прессматериал получается обычно в виде текстолитовой крошки — мелко нарубленной хлопчатобумажной ткани, пропитанной соответствующими полимерами, обычно фенолформальдегид-ными.  [c.192]


Большинство термопластов пригодны для армирования стекловолокном, что позволяет повысить их эксплуатационные качества и обеспечивает благоприятное соотношение стоимости и эксплуатационных характеристик. В большинстве случаев при армировании термопластов повышаются прочность, теплостойкость, жесткость и стабильность размеров. Например, свойства дешевых термопластичных полимеров могут быть повышены до свойств конструкционных полимерных материалов с высокими эксплуатационными качествами путем добавки стекловолокнистого наполнителя. Полученный таким образом термопластичный армированный полимер обладает такими же, если не более высокими характеристиками, как неармированный полимер, но стоимость его ниже.  [c.379]

Полимерные вещества и пластмассы, изготовляемые на основе полимеров, обладают рядом ценных свойств малой плотностью, высокими механическими и гидроизоляционными свойствами, высокой химической теплостойкостью, высокими адгезионными, герметизирующими, звукоизолирующими и другими положительными свойствами.  [c.120]

Воздействие оказывает радиация и на полимеры, а также на материалы, имеющие их в основе. В молекулах некоторых из них образуются поперечные связи (т. е. структура становится сетчатой) и, следовательно, увеличивается твердость в других — уменьшается средний молекулярный вес. Можно привести такие примеры при кратковременном радиоактивном облучении полиэтилена-1 в нем образуется сетчатая структура, влекущая за собой повышение теплостойкости. Фторопласт-4 под влиянием радиоактивного облучения утрачивает упругость, становясь все более жестким, а затем и хрупким материалом.  [c.295]

В СССР еще в 1935— 1939 гг., впервые в мировой практике, К. А. Андриановым с сотрудниками были изучены и синтезированы основные типы крем-нийорганических соединений и полимеров, обладающих высокой теплостойкостью, отличными диэлектрическими свойствами, устойчивостью к теплу и холоду, а также гидрофобностью. Война задержала реализацию этих работ, поэтому начало промышленного выпуска кремнийорганических материалов относится к 1944 г., в 1947 г. в мире было изготовлено 600 т кремнийорганических продуктов. В СССР в 1958—1959 гг. освоен выпуск более 50 наименований кремнийорганических полимеров в виде жидкостей, смол, лаков и каучуков.  [c.212]

Полиэтилен низкого давления. Выпускается он в виде гранул или в виде порошка белого цвета. Особенностями структуры полиэтилена НД по сравнению с полиэтиленом ВД объясняются значительные различия в механических свойствах этих полимеров. Большой молекулярный вес и более высокая степень кристалличности полиэтилена НД обусловливают увеличение плотности, механической прочности, модуля упругости при изгибе и теплостойкости.  [c.52]

Полимерные материалы для узлов трения. Полимеры обладают более низким коэффициентом трения, меньшим износом, не чувствительным к ударам и колебаниям, более дешевы и технологичны. Способность полимеров работать при смазке водой является важным их преимуществом перед металлами. Однако необходимо учитывать определенную специфику каждой отдельной конструкции. Известно, что пластмассы имеют склонность к набуханию в воде, невысокую теплостойкость, обладают ползучестью при нормальной температуре и низким модулем упругости. Все это показывает, что прямая замена металла полимерами не всегда целесообразна. Поэтому деталь из пластмассы не должна повторять металлическую, а должна конструироваться с учетом специфики полимерного материала. Сам же полимерный материал должен изготовляться с учетом конструкции детали и условий ее работы путем подбора рецептуры и создания необходимой макроструктуры. Следует заметить, что наиболее перспективны для узлов трения специальные комбинации полимеров с другими материалами, например, в полиамидные порошки вводят антифрикционные наполнители (графит, дисульфид молибдена, тальк и др.).  [c.205]

Испытание на теплостойкость. Определение температурных границ работоспособности полимерных материалов основано на том, что температурные зависимости модуля упругости позволяют выделить основные физические и фазовые состояния полимера, существенные для эксплуатации материала.  [c.142]

Влияние ионизирующего излучения. При действии ионизирующего излучения на пластические массы свойства их изменяются. Образуются химические связи между молекулами полимера или дополнительные связи в полимере, в результате повышаются модуль упругости, теплостойкость и другие свойства. Происходит также деструкция полимеров, приводящая к уменьшению молекулярного веса и ухудшению их свойств. Оба процесса могут идти одновременно в зависимости от дозы облучения, исполнителей и других факторов.  [c.15]


Клеи же, представляющие собой композиции, содержащие в качестве основного вещества термореактивные полимеры, составляют группу материалов, для которых характерно отверждение за счет реакций поликонденсации или полимеризации, как правило, приводящее к созданию прочных и теплостойких клеевых соеди-  [c.267]

Эпоксидные полимеры являются и главной составной частью клеев с теплостойкостью 100—150 С.  [c.268]

Полярные полимеры обладают повышенными жесткостью и теплостойкостью и пониженной морозостойкостью. Как диэлектрики пригодны лишь в ограниченной области частот.  [c.231]

Теплостойкость, или температура размягчения, определяет предельную температуру эксплуатации жестких полимерных материалов, т. е. температуру, при которой материал выдерживает определенную нагрузку в течение заданного времени, при этом деформация не превышает допустимого предела. Теплостойкость является очень важным показателем свойств полимерных материалов. Для аморфных полимеров теплостойкость близка к Т , а для высококристаллических — к Т л- Чаще всего теплостойкость, или температура размягчения, определяется как произвольная точка на кривой деформация—температура при заданной нагрузке. Только в СССР для оценки теплостойкости часто используют полные термомеханические кривые [1—6].  [c.200]

Отличительным свойством кремпийорганпческмх полимеров является их высокая теплостойкость. Наряду с высокой теплостойкостью силиконовые смолы обладают и пи.ткой температурой а м ерзания.  [c.405]

В обычных условиях полной криотвллизации не происходит. В связи с этим в реальных полимерах структура обычно двухфазная наряду с. кристаллической фазой имеется и аморфная. Кристалличность придает полимеру повышенную теплостойкость, болыцую жесткость и прочность. Степень кристалличности зависит от материала и метода обработки, причем увеличение скорости охлаждения обуславливает уменьшение вре мели на образование правильного кристаллического порядка.  [c.22]

Применяемые в машиностроении клен делятся на две группы клеи на основе органических полимерных смол типа-БФ (эпоксидные, полиэфирные, фенольные и др.) с теплостойкостью не выше 300. .. 350° С — первая группа, и клеи на основе кремнеорганн-ческих соединений и неорганических полимеров — вторая группа с теплостойкостью до 1 000° С, но с повышенной хрупкостью.  [c.364]

Существует большое разнообразие конструкционных клеев, отличающихся физико-механическими свойствами и технологией их применения. Наибольшее применение в машиностроении и приборостроении имеют органические клеи на основе синтетических полимеров, например универсальные клеи БФ, технические условия на которые стандартизованы, и эпоксидные клеи с наполнителем и без наполнителя. При необходимости повышенной теплостойкости (до 1000 С) применяют элемеи-тоорганические клеи, обладающие сравнительно меньшей эластичностью. Клеи не являются проводниками, поэтому при необходимости обеспечить электропроводность в них добавляют порошкообразное серебро.  [c.26]

Наибольшей механической прочностью обладают материалы из полимеров резольного типа с длинноволокнистым наполнителем. Наиболее высокими электрическими параметрами — материалы высокочастотного назначения из ани-линфенолформальдегидного полимера с наполнителями кварц и слюда, tg б при 50 Гц обычно определяют для материалов, предназначенных для электроизоляционных низкочастотных деталей, tg б и е, при 10 Гц —для деталей высокочастотного назначения. Наибольшее значение теплостойкости по Мартенсу имеет материал на основе резольного полимера с асбестовым волокнистым наполнителем. Модификация фенолформальдегидных полимеров полиамидами, поливинилхлоридами и синтетическим каучуком улуч- нает некоторые параметры, например удельную ударную вязкость, влагостойкость. Материалы на основе анилинфе-ыолформальдегидного полимера в эксплуатации не выделяют аммиака,< что иногда имеет место с материалами на чисто фенольных смолах. Повышенную механическую прочность имеет материал на основе модифицированного фенол-формальдегидного связующего с наполнителем из длинных стеклянных волокон. Эта масса марки АГ-4 широко используется для изготовления сравнительно крупных коллекторов без миканитовых манжет.  [c.200]

Изделия с повышенной дугостойкостью получают на основе мочевиноформальдегидных, меламинформальдегидных и кремнийорганических полимеров. Кремнийорганические материалы имеют также высокие электрические свойства, влагостойкость, теплостойкость и нагревостойкость (рабочая температура до 200° С).  [c.200]

Теплостойкость органических диэлектриков еще определяют по началу механических деформаций растяжения или изгиба, погружению иглы под давлением при нагревании диэлектрика, искривлением полимеров и пластмасс под нагрузкой (метод Л1артенса и другие).  [c.42]

Органические и кремнийорганические полимеры неприемлемы для целей высокотемпературной тензометрии ввиду их недостаточной теплостойкости, не превышающей 250 [1—3]. Наиболее пригодными в высокотемпературной тензометрии оказались органосиликатные материалы В-58Т, ВН-12Т и ВН-15Т [4—6]. Однако эти материалы требуют высоких температур отверждения (200—300°), что не всегда возможно осуществить при установке тензодатчиков на изделия. Поэтому Институтом химии силикатов АН СССР ре1палась задача снижения те. 1пературы отверждения органосиликатных материалов при сохранении их свойств.  [c.279]

Объектом исследования в настоящей работе служил полимер лака КО-921, который в неотвержденном состоянии представляет собой разветвленный полидиметилфенилсилоксановый олигомер (ПДМФС) с концевыми силанольными группами, имеющий среднечисловую молекулярную массу порядка 6000 — 7000. Среднестатистическое мономерное звено этого полимера можно представить формулой ВДТф)5, где В - (СНз)23Ю, Тф - С,И,)8Ю.1 . Лак КО-921 нашел широкое применение для изготовления теплостойких органосиликатных покрытий.  [c.72]

Стеклопластики представляют собой большой класс армированных полимеров, которые могут удовлетворить разнообразные требования, предъявляемые к готовой продукции, включая теплостойкость в широком диапазоне температур, диэлектрические свойства, коррозионную стойкость при воздействии больших нагрузок и вибраций. Стеклопластики являются идеальным материалом для удовлетворения таких требований, как жесткие допуски, стабильность размеров в широком диапазоне температур. Нижа перечислены восемь основных положений, которые полезно принимать во внимание перед началом конструирования изделий из стеклоиластиков.  [c.397]


Вторая группа полимеров получается из линейных- полимеров в результате химического процесса, превращающего их в сетчатые, такой процесс (в случае пластмасс) называется отвердением. Низкомолекулярное вещество, превращающее линейный полимер в сетчатыГ , называется отаердшпелем или вулканизатором. После отвердения, или вулканизации, в полимере повып1ается твердость, прочность, теплостойкость, формоустойчивость, но утрачивается термопластичность, растворимость. Формовку изделий производят до вулканизации.  [c.340]

Молекулы термопластичных полимеров (они имеют линейную или разветвленную структуру) не претерпевают при нагреве химических превращений, для придания пластичности их можно многократно нагревать, не опасаясь, что они потеряют свои свойства. Полиэтилен, полипропилен, поливинилхлорид (винипласт), полистирол, политетрафторэтилен (фторопласт), полиамиды, например, капрон — все это пластмассы, полученные на основе термопластичных полимеров. К ним же относятся эфироцеллюлозные материалы, например — целлулоид, и пластмассы на основе полиуретановых смол. Эти пластмассы обычно не содержат наполнителя, отличаются пониженной прочностью, сравнительно большой ударной вязкостью, хорошими диэлектрическими свойствами, низкой теплостойкостью. Для придания им эластичности при низких температурах и для облегчения деформации при переработке в них вводятся пластификаторы, например, камфара, олеиновая кислота, стеарат алюминия, дибу-тилфталат и пр.  [c.41]

Бурно развивающаяся нефтехимия создает возможности для широкого развития производства полиолефинов — наиболее массовых, дешевых и высококачественных полимеров. Поскольку полиэтилен высокого и низкого давления, полипропилен и сополимеры этилена и пропилена обладают специфическими для каждого материала свойствами, они имеют самостоятельные области применения. До 1954—1955 гг. производство полиэтилена велось только при высоком давлении. В 1956 г. в НИИ полимеризациоппых пластиков (Ленинград) разработана технология изготовления полиэтилена при низком давлении в присутствии металлорганических катализаторов. В последние годы полимеризацией пропилена получен новый синтетический материал — изотактический полипропилен регулярного кристаллического строения, обладающий повышенной теплостойкостью (рабочая температура до 150°) и высокой прочностью. Из него получают очень цепные пластические массы и синтетические волокна, по прочности превосходящие капрон и найлон. Доступность и дешевизна сырья (пропилена) открывают новому материалу чрезвычайно широкие перспективы применения в машиностроении. Крупное опытно-промышленное производство полипропилена создано на Московском НПЗ (Люберцы).  [c.213]

Кремнийорганические полимеры широко применяются для изготовления вышкокачественных теплостойких электроизолирующих материалов, антикоррозионных покрытий для металлов, а также термостойких клеев, лаков, эмалей. Так, например, они используются при создании электрических машин с рабочими температурами выше 180Х, при этом высокие дизлектричеокие свойства изоляции на основе кремнийорганических полимеров позволяют увеличить силу тока в обмотках машин. Кремнийорганические лаки (К-65, К-44, К-48, ЭФ-5Т, ЭФ-1Т, ФЭ-ЗБСУ и др.) применяются для лакировки электротехнической стали, пропитки обмоток электрических машин, изготовления электроизоляционных эмалей и паст и т. д. Одним из основных исходных материалов для получения кремнийорганических полимеров являются алкил — (арил) —хлорсиланы, представляющие важный класс мономерных кремнийорганических соединений [Л. 47, 48].  [c.17]

На практике наряду с определением предела прочности при растяжении и относительного удлинений при разрыве большое значение имеет определение предела тёкучести при растяжении и удлинения в начале течения. При переходе через предел текучести происходят недопустимо большие деформации материала. Предел текучести определяет то напряжение, до которого возможна работа полимера в конструкциях. Для полиэтилена НД оно составляет (220ч-260) 10 Н/м . Полиэтилен НД обладает более высокой теплостойкостью по сравнению с полиэтиленом ВД.  [c.52]

Полимер — порошок белого цвета с объемным весом 0,48 Г1см . Он обладает высокой степенью кристалличности, температурой плавления—171° С, хорошей теплостойкостью (до 150° С) и способностью работать при низких температурах (—62° С). При нагревании полимера до 260° С он сохраняет стабильность в течение 12 ч, при 343° С — 30 мин, в дальнейшем происходит деструкция полимера, которая ускоряется в присутствии двуокиси кремния, дымящейся серной кислоты и м-бути-ламина. Уменьшение в весе поливинилиденфторида в зависимости от температуры разложения характеризуется данными, приведенными ниже.  [c.29]

Сополимер фтористого винилидена с гексафторпропиленом обладает высокой теплостойкостью. Исходные свойства сополимера сохраняются в процессе прогрева его при 316° С на воздухе в вакууме происходит термическая деструкция полимера.  [c.31]

Основные технические характеристики ГПМ определяются химическим строением и свойствами полимеров, из которых они изготовлены, а также (в меньшей степени, в основном для пенопластов) составом газообразной фазы (табл. 84). Так, например, ГПМ, в основе которых лежат полимеры с цепным строением макромолекул, вбольшинстве случаев имеют более низкую теплостойкость и формоустойчивость, повышенную газопроницаемость и сравнительно высокие показатели прочностных свойств (табл. 84—89) по сравнению со вспененными и отвержденными полимерами трехмерной структуры. Последние (например, пеносиликон К-40, пенокарбамид мипора и пено-фенопласт ФФ), отличающиеся повышенной жесткостью и хрупкостью (в исходном состоянии), являются относительно теплостойкими их частичная деформация наблюдается при температурах, соответствующих прохождению деструктивных процессов (рис. 23).  [c.142]

Основой клеев с теплостойкостью до 60—80° С являются главным образом полиуретаны, поливинилацетали и некоторые полиамиды, модифицированные фенол-формальдегидными смолами, а также различные эпоксидные полимеры.  [c.268]


Смотреть страницы где упоминается термин Полимеры теплостойкость : [c.428]    [c.22]    [c.88]    [c.74]    [c.110]    [c.42]    [c.211]    [c.52]    [c.30]    [c.245]    [c.247]    [c.264]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.300 ]



ПОИСК



Наполненные полимеры теплостойкость

Полимерия

Полимеры

Полимеры теплостойкие

Теплостойкость



© 2025 Mash-xxl.info Реклама на сайте