Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Балки большие прогибы элементарная

Уравнение (1113.4) совершенно подобно изученному в 3.11 уравнению изгиба балки на упругом основании. Граничные условия здесь совершенно очевидны, они те же, что и для балки. Это становится ясным, если рассмотреть выделенную из оболочки полосу, как показано на рис. 12.13.3. Вследствие кривизны полоски действующие с двух сторон усилия Тг дают составляющую, направленную но радиусу, а так как Тг пропорционально прогибу w, то эта полоска находится в тех же условиях, что и балка на упругом основании. Именно так выводится уравнение (12.13.4) в элементарных руководствах. Приближенное решение уравнения (12.13.4) есть W — Wo, оно пригодно тогда, когда первый член (12.13.4) мал по сравнению со вторым, т. е. функция Wo x) заметно изменяется на длине много большей, чем характерная длина  [c.422]


Интегрирование уравнения изгиба. Интегрированию уравнения (116.4) посвящена весьма большая литература, хотя математически вопрос и представляемая элементарным. Правая часть уравнения обычно не является аналитической функцией координаты г, аналитическое выражение момента меняется от участка к участку. Поэтому задача об определении прогибов может оказаться довольно трудоемкой. На каждом участке появляются свои константы интегрирования, я их приходится определять из условий сопряжения. Излагаемый ниже метод интегрирования по идее восходит к Эйлеру, для более сложных уравнений изгиба балки на упругом основании % колебаний стержня ои разработан А. Н. Крыловым для уравнения (116.4) этот метод использовался многими авторами. Проинтегрировав уравнение (116.4) в пределах от нуля до г, получим  [c.253]

Примечания Сен-Венана к книге Клебша также представляют большую ценность, в особенности в части, касающейся колебаний стержней и теории удара. Говоря о поперечном ударе балок, мы уже отметили важный вклад Сен-Венана в этот вопрос (стр. 217). Предполагая, что тело после удара по свободно опертой балке продолжает оставаться в соприкосновевии с ней, он трактует проблему удара как задачу колебаний балки с присоединенной к ней массой. Он исследует первые семь форм колебаний системы, вычисляет соответствующие частоты и находит формы соответ-. твующих кривых для различных значений отношения между несом балки и весом ударяющего тела. Полагая, что балка в начальный момент находится в покое, между тем как присоединенная к ней масса обладает некоторой скоростью, Сен-Венан вычисляет амплитуду для каждой формы колебаний. Суммируя прогибы,, соответствующие этим элементарным колебаниям, он получает кривую прогибов балки для различных моментов времени t, а также находит наибольший прогиб и наибольшую кривизну )  [c.289]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]


Здесь через (Х ,с)1 обозначены максимальные напряжения изгиба, вычисленные как для прямой балки-полоски через (Хд,)а — напряжения изгиба, обусловленные начальным искривлением наконец, через — яолные наибольшие напряжения по середине пролета. Сравнивая эти результаты с соответствующими числами табл. 21 ( 46) для неискривленной пластинки, находим, что начальное искривление несколько уменьшило продольную силу, значительно уменьшило прогиб и напряжения изгиба. В смысле напряжений такое начальное искривление является выгодным. Ос<юенно велико влияние начального искривления при малых нагрузках, когда элементарная балка-полоска по условиям работы весьма близка к гибкой нити. При больших нагрузках разница между прямой и слегка искривленной балкой-полоской должна постепенно сглаживаться.  [c.373]


Вариационные методы в теории упругости и пластичности (1987) -- [ c.185 ]



ПОИСК



Балки большие прогибы

Прогиб балки

Прогибы

Прогибы большие



© 2025 Mash-xxl.info Реклама на сайте