Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование графическое численное дифференциальных

Точное рещение дифференциального уравнения (10.1) при помощи элементарных функций в большинстве случаев невозможно. Приближенные решения этого уравнения методами графического или численного интегрирования, хотя и возможны с достаточной для практических приложений точностью, однако громоздки и требуют иногда длительных вычислений.  [c.39]

Численное или графическое интегрирование уравнений равновесия в декартовых координатах. Этот метод основан на интегрировании дифференциальных уравнений равновесия [1], которые для случая плоского напряженного состояния при отсутствии объемных сил записываются в виде  [c.208]


Все методы определения кинетических параметров можно разделить на две большие группы. К первой относятся дифференциальные методы, при выводе которых проводится логарифмирование дифференциального уравнения (11-12). Скорость реакции определяется при этом посредством графического или численного дифференцирования кривых термогравиметрического анализа. Методы второй группы основаны на интегрировании уравнения (11-12) при тех или иных упрощающих предположениях и допущениях и требуют либо обработки полученных данных по методу проб и ошибок, либо проведения нескольких опытов с различными скоростями нагрева.  [c.347]

Дифференциальные уравнения (2-13) являются нелинейными, причем нелинейные коэффициенты этих уравнений вычисляются по весьма сложным выражениям, в которые входят заданные графические характеристики ГЭС и энергосистемы. Значительное усложнение задачи обусловлено также тем, что для уравнений (2-13) задаются не начальные, а граничные условия. Поэтому аналитическое решение уравнений (2-13) невозможно, и приходится прибегать к приближенному численному интегрированию этих уравнений.  [c.36]

С появлением ЭВМ громоздкие графические и табличные расчеты уступили место различным численным методам решения дифференциальных уравнений — методу конечных разностей [16], численному интегрированию с помош,ью стандартных процедур. Методы дискретизации, которые также используются наряду с предыдуш,ими, переводятся на язык программ с использованием матричных схем, как это было показано в 3.  [c.24]

Анализируя рассмотренные выше построения, следует указать, что метод весовой линии имеет несомненные преимущества по сравнению с другими графическими методами. В первую очередь это простота и точность, так как отпадает двойственность построения, присущая другим методам. Операции с параллельными и пересекающимися векторами (силами) следует простому закону сложения краевых и параллельных составляющих. Вычисление центров масс стержневых систем и механизмов, по методу весовой линии значительно проще, чем по существующим способам. Упрощается также исследование давлений в кинематических парах механизмов и определение реакций опор в стержневых системах. Методом весовой линии весьма просто производится бесполюсное интегрирование и дифференцирование, так как закон распределения сил соответствует закону изменения функции q = f (х). При этом первообразная функция (вес фигуры, заключенной между кривой q = f [х) и координатными осями) представляет собою интеграл. В дискретном анализе понятие бесконечно малая величина" заменяется понятием конечно малая величина со всеми вытекающими отсюда представлениями о производной в конечных разностях и численным интегрированием (вычислением квадратур). Полигоны равновесия узлов в стержневых системах, построенные по методу весовой линии, проще диаграмм Л. Кремоны, так как позволяют вычислять усилие в заданном стержне не прибегая к определению усилий в других стержнях, необходимых для построения диаграмм Кремоны. Графическое решение многочленных линейных уравнений (многоопорные валы и балки, звенья, имеющие форму пластин, и т. д.) производится по опорным весам или коэффициентам при неизвестных. Такой путь наиболее прост и надежен для проверки правильности решения. Впервые в технической литературе. дано графическое решение дифференциальных уравнений для балки переменного сечения на упругом основании и для круглых пластин с отверстиями, аналитическое решение которых требует сложного математического аппарата. В заключение отметим предельно простое решение дифференциальных уравнений теории упругости (в частных производных) указанным методом.  [c.150]


Нетрудно заметить, что уравнения (XII.16) и (XII.17), являющиеся уравнениями Рикатти, не интегрируются в элементарных функциях. Для нахождения их решения можно применять метод численного интегрирования. Однако для упрощения расчетов, если зависимость рд , = р (/) задана графически, можно с небольшой погрешностью представить график в виде отрезков прямых, произведя линеаризацию кривой. После этого численное интегрирование не представляет особого труда. При расчете необходимо следить по значению скорости и числу Re за режимом течения жидкости и при смене режима перейти на соответствующее уравнение. Когда значение р t) достигнет своего практически постоянного значения (например, давления в сети), то и правые части уравнений (XII.16) и (ХП.17) окажутся постоянными и их можно проинтегрировать, как дифференциальные уравнения с разделяющимися переменными. Разгон поршня будет происходить до установления постоянной скорости и .  [c.235]

В предшествующем параграфе был рассмотрен самый простой метод использования интегральных соотношений для ламинарного пограничного слоя, но расчёты оказались вполне удовлетворительными лишь для тех случаев, в которых продольный перепад давления оказывался либо отрицательным, либо был небольшим положительным. Для больших положительных перепадов давления в пограничном слое он мало пригоден. Кроме того, этот метод требовал графического или численного интегрирования нелинейного уравнения (4.17) для каждого распределения скорости внешнего потока вдоль пограничного слоя. Эти два обстоятельства и побуждали многих исследователей искать другие приближённые методы решения уравнений для пограничного слоя. Большая группа этих методов, получивших наибольшее применение к решению отдельных задач, основывается на специальном выборе независимых безразмерных переменных, позволяющем дифференциальные уравнения с частными производными (1.13) сводить либо к одному нелинейному обыкновенному дифференциальному уравнению с числовыми коэффициентами, либо к некоторой последовательности обыкновенных дифференциальных уравнений также с числовыми коэффициентами. В этих методах численно решается обыкновенное уравнение или группа, уравнений и составляются соответственные таблицы. Эти таблицы затем могут быть использованы для целой группы соответственных задач (а не одной какой-либо задачи).  [c.272]


Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.0 ]



ПОИСК



Графический

Графическое интегрирование

Интегрирование

Интегрирование графическое численное

Интегрирование дифференциальных

Интегрирование численное

Численное интегрирование дифференциальных



© 2025 Mash-xxl.info Реклама на сайте