Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сечение призмы плоскостью

СЕЧЕНИЕ ПРИЗМЫ ПЛОСКОСТЬЮ  [c.95]

Так, на рис. 162 показаны необходимые построения для определения сечения призмы плоскостью efk, e fk. Определяем точки пересечения ребер призмы с плоскостью. Находим точку пересечения ребра aai, a ai плоскостью. Проводим через это ребро, вспомогательную проецирующую плоскость Nh и определяем линию п, r[t пересечения ее секущей плоскостью.  [c.114]

Как строят сечение призмы плоскостью, параллельной ее боковым ребрам  [c.86]


Решение. На рис. 269 изображены прямоугольный треугольник АВС — сечение призмы плоскостью V и Вз, В — сечения грузов топ же плоскостью. Применяем объединенный принцип Даламбера — Лагранжа. Система имеет три степени  [c.360]

Т) (6, - 7, )ПК, К," = D, D С, = (D, - 5, )nG,"K," С и (A B D ) - аксонометрическая проекция линии сечения призмы плоскостью р. Прямые (3 - 4) и (6 - 7) параллельны, поэтому одну из этих точек можно не указывать.  [c.126]

Призма правильная 1/ = Fh М = р1 S = M+2F р — периметр сечения призмы плоскостью, перпендикулярной к ребру 1 — длина ребра  [c.561]

Построение развертки наклонной призмы и нанесение линии сечения (рис. 237). Даны проекции треугольной наклонной призмы, боковые ребра которой параллельны плоскости V. Призма рассечена фронтально-проектирующей плоскостью (линия сечения призмы плоскостью обозначена А—А). Требуется построить полную развертку поверхности призмы и нанести линию сечения.  [c.169]

Форма фигуры сечения призмы плоскостью зависит от взаимного расположения секущей плоскости и призмы. При пересечении плоскостью Р, параллельной основанию, образуется многоугольник, конгруэнтный основанию призмы (рис. 139, а, б) при пересечении плоскостью Q, наклоненной к основанию, — многоугольник, не конгруэнтный основанию (рис. 139, а, в) при  [c.135]

Пример 1. Сечение призмы плоскостью. В сечении призмы плоскостью могут получаться различные фигуры  [c.81]

Рис. 134. Сечение призмы плоскостью Рис. 134. <a href="/info/405364">Сечение призмы</a> плоскостью
Сечение призмы плоскостью. На рис. 247 показано построение проекций и истинного вида сечения прямой треугольной призмы фронтально-проецирующей плоскостью Р. Плоскость Р перпендикулярна плоскости V, поэтому фронтальная проекция сечения и плоскости совпадают. По фронтальной проекции можно заключить, что плоскость Р пересекается с верхним основанием призмы и ее боковыми гранями. Поскольку грани призмы перпендикулярны одной или двум плоскостям проекций, то для построения линии пересечения их с плоскостью Р достаточно воспользоваться линиями связи.  [c.137]


М = р1, где р — периметр сечения призмы плоскостью, перпендикулярной к ребру длина ребра.  [c.79]

V = РП Рп Рб + 2Р) Ро = р1, где г —ребро, р—периметр сечения призмы плоскостью, перпендикулярной к ребру.  [c.115]

Сечение призмы плоскостью  [c.149]

В заданиях 73—77 даны упражнения на пересечение тел плоскостями. В результате построения этих пересечений получается замкнутая ломаная или кривая линия. Причем для построения ломаной линии сечения призмы плоскостью необходимо определить точки пересечения ребер призмы секущей плоскостью.  [c.9]

Оптическая деталь с плоскими преломляющими поверхностями У и 2, образующими двугранный угол а, называется преломляющей призмой. Сечение призмы плоскостью, перпендикулярной ребру двугранного угла, будет главным сечением призмы (рис. 32).  [c.72]

Грань AiB u принадлежащая плоскости Р, произвольным образом расположенной относительно плоскости Q основания AB , представляет собой сечение призмы. Такую призму называют усеченной.  [c.106]

Даны призма и отрезок А В на ее грани. Пересечь призму плоскостью, проходящей через прямую АВ, так, чтобы в сечении получился равнобедренный треугольник AB с основанием А В (рис. 305).  [c.250]

Сечение (АВС) призмы плоскостью у(у2), перпендикулярной боковым рёбрам, называют нормальным. Отсюда и название способа, суть которого в следующем.  [c.198]

По способу нормальных сечений призму пересекают плоскостью Д, перпендикулярной ее боковым ребрам определяют длины сторон ломаной линии — сечения эта ломаная развертывается в отрезок прямой, через точки, соответственные вершинам ломаной, проводят перпендикуляры к этой прямой, на которых откладывают натуральные длины соответствующих отрезков ребер концы ребер последовательно соединяют отрезками прямых пристраивают к построенной развертке боковой поверхности призмы натуральные фигуры оснований призмы.  [c.137]

Развертку построим способом нормальных сечений. Проведем плоскость Д, перпендикулярную боковым ребрам призмы. Фронтально проецирующая плоскость A(Aj) пересекает призму по треугольнику EFG. Способом прямоугольного треугольника определим натуральные длины сторон треугольника EFG (на рис. 169 определение длин отрезков EF, FG, GE не показано).  [c.137]

М). На однородную призму (рис. 109), лежащую на горизонтальной плоскости, положена однородная призма В поперечные сечения призм — прямоугольные треугольники, вес призмы А втрое больше веса призмы В. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину I, на которую передвинется призма А, когда призма В, спускаясь по А, дойдет до горизонтальной плоскости.  [c.142]

Условие пластичности Сен-Венана (2.76) представляет собой правильную шестигранную призму, вписанную в цилиндр Мизеса. В сечении D-плоскостью окружность Мизеса оказывается описанной около правильного шестиугольника Сен-Венана (рис. 11.2, в).  [c.252]

При выпуклом основании призма называется выпуклой. И сечения выпуклой призмы плоскостью будут выпуклыми многоугольниками.  [c.116]

Способ нормального сечения используют для развертки поверхности призм общего положения. В этом случае строится сечение призмы плоскостью а, перпендикулярной к ее боковым ребрам (черт. 338, а), и определяются длины сторон многоугольни  [c.116]

Построение развертки прямого кругового цилиндра и нанесение линии сечения (рис. 239). Даны проекции прямого кругового цилиндра, основание которого расположено на плоскости Я. Цилиндр пересечен фронтально-пройстирующей плоскостью (линия сечения призмы плоскостью обозначена А—А). Требуется построить полную развертку поверхности цилиндра и нанести линию сечения.  [c.171]

Если вместо пирамиды будет задана п-уголь-ная призма, то простейшая секушАя плоскость должна проходить через прямую ЕР параллельно боковым ребрам призмы (рис. 184). Такая плоскость любую п-угольную призму пересечет по параллелограмму. Положение простейшей секущей плоскости Q на рис. 184 определяют данная прямая ЕР и пересекающаяся с ней ЕМ , параллельная боковым ребрам призмы. Построив сечение призмы плоскостью Р, отмечают искомые точки К я I.  [c.101]

Грани призмы являются плоскостями уровня. Поэтому построение линии пересечения поверхностей многогранников выполним способом граней. Сначала строим сечение пирамиды плоскостью Г верхней грани призмы. Из полученного треугольного сечения выделяем ломаную 1234, раеполо-женную в пределах верхней грани призмы. Затем строим треу10льное  [c.117]


Допустим, что искомое направление луча построено. Найдя требуемое направление проецирующих лучей АА, BBi и i, построив сечение этих лучей нормальной по отношению к ним плоскостью, получим в сечении точки, соединив которые отрезками прямых, найдем искомый треугольник А В]Си подобный заданному AqBq o. Полученная в результате этих построений фигура будет по отношению к искомой секущей плоскости прямой трехгранной призмой, а треугольник AB будет сечением построенной призмы плоскостью, не параллельной основанию Л1В1С1,  [c.74]

Определяем далее взаимное положение между косым сечением призмы и любым из боковых ее ребер. Для этого ставим плоскость сечения призмы в положение фронтально проецирующей плоскости. Получаем фигуру азЬзСз, аз Ьз сз и отрезок Аз з, а кз произвольной длины ребра призмы, проходящего через вершину Яг, Сг треугольник ка (рис. 70 и 71).  [c.84]

Далее способом перемещения ставим косое сечение призмы в положение, параллельное горизонтальной плоскости проекций. Получаем треугольник a bi i, а/Ь/с/ и отрезок а кц, a/kt (рис. 72).  [c.84]


Смотреть страницы где упоминается термин Сечение призмы плоскостью : [c.97]    [c.456]    [c.456]    [c.68]    [c.113]    [c.264]    [c.10]    [c.121]    [c.125]    [c.125]    [c.206]    [c.119]    [c.191]    [c.265]   
Смотреть главы в:

Инженерная графика Издание 3  -> Сечение призмы плоскостью



ПОИСК



Плоскость сечения

Практические применения. Случай, когда сила или пара сил, изгибающая призму, действует в плоскости, параллельной одной из двух главных осей ее сечений

Преломление лучей через призму в ее главном сечении — Преломление луча, проходящего через призму вне плоскости главного сечения (внемеридиональный луч)

Преломление лучей через призму в ее главном сечении — Преломление луча, проходящего через призму вне плоскости главного сечения (внемерндиональный луч)

Призма

Сечение плоскостью призмы, пирамиды, цилиндра и конуса

Сечения призмы



© 2025 Mash-xxl.info Реклама на сайте