Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Источники шума в оптическом приемнике

ИСТОЧНИКИ ШУМА В ОПТИЧЕСКОМ ПРИЕМНИКЕ  [c.347]

Источниками внешних аддитивных шумов могут быть любые фоновые источники, попадающие в поле зрения приемника (включая Солнце, Луну, звезды). Очень часто наиболее интенсивными шумами являются отраженное связным ретранслятором или рассеянное атмосферой солнечное излучение, попадающее в приемное устройство. Указанные источники фоновых шумов являются тепловыми [2 1, 56] и при малых значениях энергии, приходящейся на степень свободы поля, воздействующего на чувствительный элемент приемника, могут описываться распределением Пуассона. Удовлетворить условию малости энергии, приходящейся на степень свободы поля ), нетрудно, так как продолжительность от-счетного интервала (или длительность информационного сигнала) для ряда систем связи оптического диапазона составляет всего несколько наносекунд кроме того, необходимо учитывать существенные ограничения, связанные с созданием узкополосных оптических фильтров. Например, при длительности информационного сим-  [c.20]


В идеальной системе связи это изменение числа генерируемых пар носителей заряда — единственный источник шума. Кроме того, в такой системе оптическая энергия принимается, а носители заряда генерируются только тогда, когда передается 1. Если приемник достаточно чувствителен, чтобы обнаружить единственную электронно-дырочную пару, созданную светом, то порог может быть установлен на этом уровне. И нет никакой ошибки при передаче О, поскольку не принимается никакая энергия и не генерируется никакой сигнал. Только когда упавшая на фотоприемник оптическая энергия, соответствующая 1, вообще не генерирует какие-либо носители заряда, тогда вместо ожидаемого числа N записывается ошибка. Напомним, что О и 1 передаются с одинаковой вероятностью [см. (15.1.3)1.  [c.378]

Из формулы (4.5.4) следует, что максимальная чувствительность измерений получается при симметричном угле, равном я/4. Однако при этом поток излучения, падающий на приемник, слишком велик, вследствие чего возрастают шумы и работать при таких условиях нецелесообразно. Углы выбирают от 2 до 10° в зависимости от оптической плотности исследуемого вещества (чем больше плотность, тем больше симметричные углы). Для достижения высокой точности при работе этим методом необходима стабилизация потока излучения используемого источника света до 0,1 %, и тогда для вещества с малой оптической плотностью погрешность измерения составляет несколько тысячных градуса.  [c.320]

Рассмотренные выше характеристики излучения являются результатом возбуждения одной моды либо когерентным источником (ОКГ), работающим в одночастотном режиме, либо ансамблем хаотических шумов источников. Однако в оптических системах связи и локации излучение на приемной стороне является смесью или суперпозицией когерентного сигнала и шумового хаотического поля. При обеспечении приемником хорошей пространственной и частдтной селекции возникает вопрос об обнаружении и выделении полезного сигнала из одномодового излучения, являющегося суперпозицией некогерентного и когерентного излучений с известной начальной фазой. В приложении 2 путем свертки весовых функций составляющих полей получена результирующая весовая  [c.23]

Следует отметить, что приведенный выше перечёнь источников внешних и внутренних шумов в оптическом диапазоне не исчерпывает всех источников, достаточно указать на шумы, обусловленные разбросом времени прихода электронов при вторичном умножении в фотоэлектронных умножителях, генерационно-рекомбинационные шумы и лавинные шумы в полупроводниковых фотоприемниках, тепловые шумы последующих каскадов оптических приемников и т. д. Задача систематизации, классификации и углубленного исследования внешних и внутренних шумов оптического диапазона с учетом квантовых флуктуаций еще ждет своего решения. Однако можно сказать, что статистические распределения шумовых сигналов оптического диапазона в основном будут определяться двумя указанными выше распределениями или незначительно от них отличаться.  [c.52]


Обобщенная структурная схема оптического приемника приведена на рис. 14.1. Как видно из нее, фотодиод преобразует принимаемый оптический сигнал в агпектрический ток, пропорциональный мощности оптического сигнала. Следующий за фотодиодом усилитель усиливает полученный токовый сигнал и преобразует его в напряжение. Как и в любой системе связи, отношение сигнал-шум на выходе оптической системы и ее характеристики определяются тем звеном оптического приемника, где принятый сигнал имеет наименьший уровень. Следовательно, характеристики этого звена являются основными при проектировании всей системы связи. В 14.2 будут рассмотрены различные источники шума в приемнике оптических сигналов. В последующих параграфах определяется зависимость отношения сигнал-шум от уровня принимаемого сигнала для различных схем усилителей. И, наконец, в заключительных главах будет найдено минимальное значение отношения сигнал-шум, необходимое для нормальной работы системы связи при использовании различных видов модуляции.  [c.346]

Синтезу оптимальных приемных устройств оптического диапазона и оценке их эффективности посвящен ряд работ. Так, в 141] Получен алгоритм действия оптического приемника при приеме дискретномодулированных по интенсивности сигналов найдено, что оптимальными сигналами с точки зрения максимума отношения сигнал/шум являются сигналы с активной и пассивной паузой. В (44] с некоторыми модификациями решались те же вопросы, что и в [41]. В [21] рассматривался вопрос оптимального разрешения некогерентных сигналов оптического диапазона эта работа тесно связана с обнаружением точечных источников на фоне местности. Недостатком указанных работ является то, что статистические распределения сигнальных и шумовых фотонов задаются априорно, без строгого обоснования. Этого недостатка лишены работы [65, 90], где с квантовых позиций осуществляется подход к решению задач обнаружения и приема сигналов этот подход позволяет определить потенциальные возможности обнаружения и выделения лазерных сигналов, осуществить синтез систем, реализующих эти возможности, найти предельную чувствительность и точность приборов. Методам оценки эффективности и оптимизации локационных систем посвящены работы [23, 24]. Анализ дискретных информационных систем оптического диапазона проводится в [42, 43, 45, 46, 47, 62, 67, 99, 101, 102, 103, 105, 106, 107], где также приведены оценки эффективности этих систем. Однако основополагающими работами в области статистической теории обнаружения и приема оптических сигналов следует считать работы К. Хелстрома [19, 20], где строго с квантовых позиций рассмотрен широкий круг интересных вопросов, введен оператор обнаружения и найден ряд аналитических выражений, позволяющих найти алгоритм обработки сигналов и произвести оценку эффективности систем. Отметим, что указанные работы носят характер журнальных статей и перечень их довольно скромен. Совершенно очевидно, что исследования в области создания статистической теории должны быть значительно расширены.  [c.14]

При обеспечении хорошей пространственной селекции в приемном устройстве внешние шумы можно свести к л нимуму. В этих условиях мешающее воздействие оказывают внутренние шумы приемного устройства. Основным источником внутренних шумов фо-тоэмиссионного приемника являются шумы, обусловленные тем-новым током. Темновой ток является результатом случайной эмиссии фотоэлектронов с фоточувствительной поверхности и не зависит от интенсивности поступающего оптического сигнала. Эквивалентное темповому току приведенное ко входу приемной системы статистическое распределение фотоэлектронов обычно считается пуассоновским [23].  [c.52]

Статистическое распределение шумового сигнала в указанных системах будет зависеть от конструкции и специфики применения самих систем длительности интервала наблюдения Т или длительности информационного символа, спектральных свойств шумового пЬля, ширины полосы пропускания оптического фильтра и др. Например, в случае глубокого охлаждения приемника (резкое уменьшение темнового тока), использования специальной пороговой дискриминации в приемнике и при необходимости широкого обзора пространства шумы будут в основном определяться внешними источниками, т. е. распределение будет подчиняться закону Бозе— Эйнштейна. Если в оптической системе применяется пространственная селекция, а приемник не охлажден, то распределение шумовых фотонов будет подчиняться закону Пуассона и т. д. Следовательно, в зависимости от конструкции н назначения системы класс учитываемых шумовых сигналов будет существенным образом изменяться.  [c.53]


После первоначального усиления принятый приемником сигнал поступает на решающее устройство, которое его стробирует в некоторой тoч ie в течение каждого тактового интервала и затем сравнивает полученное значение отсчета с некоторым заданным пороговым уровнем. Если амплитуда отсчета превышает порог, генерируется 1, если нет, предполагается, что передан 0. При наличии ошибок регенерированный сигнал будет отличиться от сигнала, переданного первоначально. Определение приемлемого значения коэффициента ошибок является существенной частью технических требований на любую систему связи. В соответствии с международным стандартом на цифровые телефонные каналы связи в линии протяженностью 2500 км допускается не более 2 ошибок при передаче 10 бит информации. Обычно это выражается в виде вероятности ошибки (РЕ) во всей линии, как 2-10 . Это означает, что для каждых 10 км линии связи средняя вероятность ошибки должна поддерживаться на уровне ниже (2-10 )-(10/2500) == 0,8-10 . Необходимо гюнять, что эта цифра представляет собой минимальные средние требования для каждых 10 км линии связи. На практике основная часть имеющихся ошибок относится только к очень малому числу из многих звеньев, входящих в состав протяженного канала связи. Более вероятно, что реальные характеристики системы связи будут определяться внешними возмущениями, или помехами в нашей терминологии, а не внутренними источниками шума, которые рассматриваются в гл. 14 и 15. Это часто вызывает появление пачек ошибок, а не нх стационарное случайное распределение. Одним из достоинств волоконно-оптических систем связи является, то что в отличие от электрических сама линия передачи обычно нечувствительна к таким помехам. Однако оконечная аппаратура чувствительнее к ним, так же, как и электрические схемы электропитания, которые могут составлять часть оптического волоконного кабеля. Имея это в виду, примем в качестве обычного требования на допустимую вероятность ошибки для типичной оптической линии связи значение, равное 10 . В других применениях допустимые значения вероятностей ошибок могут изменяться в пределах 10 . .. 10 , однако, как будет показано, при таких уровнях ошибок требуемая мощность сигнала на входе приемника относительно нечувствительна к точному значению вероятности ошибок, которое нужно обеспечить.  [c.372]

Взаимные помехи между символами, которые, как было показано, имеют место тогда, когда сигнал, принимаемый во время одного тактового интервала, воздействует на амплитуду сигнала во время другого. Чем уже полоса пропускания усилителя, тем более вероятны взаимные помехи между символами, поскольку в этом случае импульсная характеристика усилителя расширяется и распространяется на соседние тактовые интервалы. Если ограничения полосы пропускания возникают в источнике излучения или в оптическом волокне, то это приводит к тому, что оптическая мощность сигнала, принимаемая за время одного тактового интервала, поступает на приемник во время соседних. Помимо обычных взаимных помех между символами это приводит также к появлению в соседних тактовых интервалах до1юлннтельного шума в виде коротких импульсов.  [c.374]

Оптическая линия связи работаете прямой модуляцией интенсивности в диапазоне частот О...10 МГц. Требуется обеспечить отношение снгнал-шум на входе приемника, равное 50 дБ (отношение максимального значения сигнала к среднеквадратнческому шуму /С—316). В качестве источника излучения использован светодиод, который вводит в многомодовое волокно 50 мкВт средней мощности. приче.м его коэффициент модуляции ограничен значением 0,5.. Затухание в волокне равно 4 дБ/км. Фотодетектор — ЛФД с коэффициентом усиления 100. коэффициентом шума 5 и с чувствительностью без умножения 0,6 A/Вт.  [c.467]

Основным источником внутренних шумов является темновой ток чувствительного элемента приемника, который не зависит от падающего оптического сигнала статистическое распределение шумовых фотоэлектронов в этом случае часто моделируется статистикой Пуассона [23, 24].  [c.21]

Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора, модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или алюминиево-иттриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить ее быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндр рического корпуса. Осветитель диффузионного типа пред ставляет собой два входящих один в другой цилиндра, между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную ус тойчивую работу или на импульсную с быстрыми запусками. Основные данные унифицированной головки таковы длина волны 1,06 мкм, энергия накачки—25 Дж, энергия выходного импульса — 0,2 Дж, длительность импульса 25 НС, частота следования импульсов 0,33 Гц (в течение 12 с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5-10 Вт. В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из йфокального телескопа для уменьшения расходимости лазерного. луча и фокусирующего объектива для фото приемника. Фотодиоды имеют диаметр активной пло-  [c.140]



Смотреть страницы где упоминается термин Источники шума в оптическом приемнике : [c.393]    [c.452]    [c.467]    [c.445]    [c.425]   
Смотреть главы в:

Оптические системы связи  -> Источники шума в оптическом приемнике



ПОИСК



Приемник



© 2025 Mash-xxl.info Реклама на сайте