Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классическая теория пологих анизотропных оболочек

Классическая теория пологих анизотропных оболочек  [c.66]

Разрешающие уравнения и расчетные формулы классической теории пологих анизотропных оболочек, составленных из произвольного числа однородных слоев  [c.185]

Таким образом, построенные в настоящей главе классические теории симметрично нагруженной ортотропной оболочки вращения ( 2), круговых цилиндрических оболочек ( 3), ортотропной сферической оболочки ( 4), пологих анизотропных оболочек. ( 5) — могут считаться классическими теориями соответствующих слоистых (симметрично собранных) оболочек. Только при этом надо помнить, что жесткости должны быть определены по формулам (10.16) и (10.17), а напряжения в слоях — по формулам  [c.161]


Дальнейшие упрощения геометрических соотношений связаны с различными предположениями относительно геометрии и характера деформирования оболочки. Однако, прежде чем перейти к их изложению, необходимо сделать следующее замечание. Понятия пологая оболочка, тонкостенная оболочка сложились в классической теории оболочек, рассматривающей однородные изотропные конструкции, и были автоматически перенесены на оболочки из конструктивно неоднородных и анизотропных (композиционных) материалов. Вопрос корректности переноса областей применимости различных приближений, установленных в классической теории, в теорию неклассических оболочек в теоретическом отношении исследован явно недостаточно и по сути остается на сегодняшний день вопросом инженерной практики. Поэтому в следующих разделах параграфа ограничимся сводкой качественных соотношений, воздерживаясь от количественных оценок областей их применения.  [c.88]

Подставляя значения внутренних сил и моментов из (9.31) в первые три уравнения равновесия (9.35), из которых с помощью последних двух уравнений исключены поперечные силы iVj, N , и при этом учитывая (9.32), (9.30), (9.22)—(9.26), получим разрешающую систему из трех дифференциальных уравнений относительно трех искомых функций и а, Р),г (а, р), w (а, р). Здесь в правых частях разрешающих уравнений, наряду с грузовыми членами Х" " (а, р), а, р), а, р), будут стоять некоторые величины, значения которых определяются на основании решения рассматриваемой задачи по классической теории. В случае пологих оболочек разрешающие уравнения новой уточненной теории анизотропных оболочек можно построить смешанным методом. Для этого необходимо ввести в рассмотрение новую искомую функцию напряжений F (а, р), через которую внутренние тангенциальные силы представляются обычным образом (см. формулы (5.7)). Мы получим обычную систему двух разрешающих уравнений относительно двух искомых функций W а, р) и (а, р). И в этом случае в правых частях уравнений, наряду с грузовыми членами, будут стоять некоторые величины, значения которых определяются на основании решения рассматриваемой задачи по классической теории.  [c.142]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]



Смотреть главы в:

Общая теория анизотропных оболочек  -> Классическая теория пологих анизотропных оболочек



ПОИСК



Анизотропность

Газ классический

К пологая

Оболочка анизотропная пологая

Оболочка классическая теория

Оболочки Теория — См. Теория оболочек

Оболочки пологие

Оболочки пологие оболочек

Пологйе оболочки

Разрешающие уравнения и расчетные формулы классической теории пологих анизотропных оболочек, составленных из произвольного числа однородных слоев

Теория классическая

Теория оболочек

Теория пологих оболочек



© 2025 Mash-xxl.info Реклама на сайте