Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость и колебания круговых цилиндрических оболочек

Задача динамической устойчивости для упруго-пластической оболочки с начальными несовершенствами решалась А. К. Перцевым (1964). Автором рассмотрен процесс потери устойчивости круговой цилиндрической оболочки, находящейся под действием внешнего гидростатического давления, к боковой поверхности которой приложена динамическая нагрузка. Считалось, что в пластических зонах компоненты напряжения остаются постоянными. Далее вводилась функция напряжений для прогибов и начальной погиби. Влияние жидкости на изгибное движение оболочки учитывалось приближенным коэффициентом. В результате ряда допущений оказалось, что уравнение неразрывности может быть проинтегрировано точно, а уравнение движения — методом Бубнова — Галеркина. В итоге-автор проанализировал поведение коэффициента перегрузки, определяющего превышение критической динамической нагрузки над соответствующей статической. С увеличением длительности действия нагрузки коэффициент перегрузки уменьшается, а при значениях длительности, равных или больших трех периодов собственных колебаний, становится практически равным единице.  [c.322]


Накопленный опыт [17—19, 21, 23, 24, 30] использования метода инвариантного погружения в задачах статики, устойчивости, свободных колебаний слоистых оболочек вращения с применением разработанных в настоящей монографии неклассических дифференциальных уравнений позволяет заключить, что соответствующие им уравнения (7.2.21), (7.2.28) можно отнести к классу умеренно" жестких. Так, в рассмотренной ниже тестовой задаче прочности длинной круговой цилиндрической панели (требующей введения достаточно густой координатной сетки), дифференциальные уравнения метода инвариантного погружения (7.2.21),  [c.204]

Из формул (3.22) и (3.23) нетрудно получить ранее найденные формулы для определения частоты колебаний (1.14) и критической силы статической устойчивости (2.8) круговой цилиндрической панели. Таким же образом могут быть найдены указанные расчетные величины для различных типов пологих ортотропных слоистых оболочек.  [c.383]

В монографии представлены результаты теоретических и численных исследований, выполненных авторами в области механики и вычислительной математики слоистых тонкостенных анизотропных оболочек, а также неклассическая математическая модель нелинейного деформирования тонкостенных слоистых упругих композитных пластин и оболочек, отражающая специфику их механического поведения в широкой области изменения нагрузок, геометрических и механических параметров, структур армирования. Предложен и реализован эффективный метод численного решения краевых задач неклассической теории многослойных оболочек, основанный на идеях инвариантного погружения. Получены решения задач начального разрушения, устойчивости, свободных колебаний слоистых конструкций распространенных форм — прямоугольных и круговых пластин, цилиндрических панелей, цилиндрических и конических оболочек. Дана оценка влияния на характеристики напряженно-деформированного состояния и критические параметры устойчивости таких факторов, как поперечные сдвиговые деформации, обжатие нормали, моментность основного равновесного состояния, докритические деформации. Проведены систематические сравнения полученных решений с решениями, найденными при использовании некоторых других известных в литературе неклассических моделей, в том числе и в трехмерной постановке.  [c.2]

Книга oj toht из семи глав. В главе 1 разобраны общие принципы механики деформируемых твердых тел. Глава 2 отведена классической теории изгиба стержней. В главе 3 содержится усовершенствованная теория изгиба упругих стержней. Глава 4 включает в себя классическую теорию упругих тонких пластин (малые прогибы, колебания, устойчивость, конечные прогибы). В главе 5 дается теория больших прогибов тонких пластин и теория малых прогибов толстых пластин. В главе 6 представлены соотношения классической теории оболочек (уточненные и упрощенные варианты теории). В заключительной главе рассматривается круговая цилиндрическая оболочка (малые колебания и линеаризированная устойчивость).  [c.6]


Филиппов С.Б. Свободные колебания и устойчивость круговой цилиндрической оболочки, подкрепленной шпангоутами // Динамика и устойчивость механических систем. Прикл. мех. Вып. б. — Л. Изд-во Ленингр. ун-та, 1984. — С. 153-161.  [c.317]

Уэноя и Редвуд рассмотрели упругопластическую устойчивость при сдвиге, квадратной пластинки, ослабленной круговыми вырезами. Ряд публикаций посвящен исследованиям влияния вырезов различной формы и размеров на собственные частоты колебаний цилиндрических оболочек.  [c.6]


Смотреть страницы где упоминается термин Устойчивость и колебания круговых цилиндрических оболочек : [c.501]    [c.501]    [c.205]   
Смотреть главы в:

Устойчивость и колебания трехслойных оболочек  -> Устойчивость и колебания круговых цилиндрических оболочек



ПОИСК



Колебание устойчивое

Колебания круговые

Колебания оболочек

Колебания цилиндрических оболочек

Оболочка Устойчивость

Оболочка цилиндрическая

Оболочки цилиндрические круговые

Устойчивость круговой цилиндрической оболочки

Устойчивость цилиндрических

Устойчивость цилиндрических - оболочек



© 2025 Mash-xxl.info Реклама на сайте