Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение фазового (структурного) состава сплава

ОПРЕДЕЛЕНИЕ ФАЗОВОГО (СТРУКТУРНОГО) СОСТАВА СПЛАВА  [c.322]

Металлографическое определение объемного фазового (структурного) состава сплава основывается на положении Ка-  [c.322]

В структурно-фазовом составе сплавов данной системы важное место занимает эвтектика, представляющая собой смесь мелкозернистых фаз а и р. Она имеет определенный состав и кристаллизуется при наименьшей для  [c.67]

Программа не учитывает изменения величин межплоскостных расстояний и интенсивностей отражения для фаз, связанных с легированием и образованием твердых растворов. Очевидно, в этом случае достоверность определения фазового состава будет хуже. Задача. может быть решена в случае известного химического состава сплава. Это позволяет предположить, а затем и подтвердить с помощью теоретического индицирования и расчета интенсивностей присутствие фазы определенного структурного типа.  [c.125]


Для определения в условиях равновесия фазового и структурного состава тройных сплавов в зависимости от температуры и концентрации применяют пространственные диаграммы, имеющие вид трехгранных призм. Основанием призмы удобно выбирать равносторонний ( концентрационный с ) треугольник, так как в таком треугольнике концентрацию всех компонентов можно показать в одинаковом масштабе. Компоненты сплава располагают в вершинах треугольника, концентрации двойных сплавов — на соответствующих сторонах треугольника, а тройные сплавы — внутри треугольника. Каждая точка внутри треугольника характеризует тройной сплав определенного состава.  [c.223]

Под термической обработкой понимают комплекс операций нагрева и охлаждения сплава, осуществляемых по определенному режиму с целью изменения его строения и получения заданных свойств. Основу термической обработки составляет изменение структурно-фазового состава и дислокационной структуры сплава, которое может быть достигнуто путем использования таких ключевых факторов, как наличие в нем аллотропических превращений или зависящей от температуры ограниченной взаимной растворимости компонентов.  [c.97]

На рис. 4.5, в в виде схемы показана пластинчатая эвтектика. Кристаллы а и / здесь имеют форму пластин и равномерно чередуются между собой, образуя колонии. При охлаждении эвтектики при температуре ниже точки С состав /3-фазы не изменяется, а состав а-фазы, входящей в эвтектику, изменяется по линии ЕР, в результате чего выделяются вторичные кристаллы /Зц (см. рис. 4.4). При 20 - 25 °С состав эвтектики в сплаве будет иметь фазы ар + fiq + /Здц. Однако в этом случае наблюдать под микроскопом фазу не удается. Так как эвтектика (а + 13р) содержит фазы строго определенного состава и количественного соотношения, ее принято считать одной структурной составляющей (хотя следует помнить, что она состоит из двух фаз) с присущими ей характерными свойствами. Несмотря на то что диаграмма состояния отражает только фазовый состав, тем не менее на ней часто указывают и структурный состав.  [c.94]

Для выявления способности черного или цветного металла к деформации в горячем состоянии пользуются характеристиками механических свойств, определяемыми при испытаниях на растяжение при повышенных температурах (до 1200° С) по ГОСТ 9651—73, результатами испытаний по определению ударной вязкости ан при нормальных (ГОСТ 9454—60) и повышенных (ГОСТ 9456—60) температурах. Кроме того, учитывают влияние на изменение химического состава и фазовых превращений металла или сплава исходного структурного состояния, температуры, схемы напряженного состояния, степени и скорости деформации на изменение механических свойств металла в процессе горячей деформации.  [c.41]


Целесообразно выдавать студенту одну задачу по разбору диаграмм состояния. Он должен сначала вычертить диаграмму и построить кривые охлаждения для трех сплавов, указанных в задаче. Соответствующие диаграммы состояния приведены в книге в виде фазовых диаграмм, так как именно они характеризуют равновесное состояние сплавов. Для выполнения задачи студент должен построить структурную диаграмму, что необходимо для характеристики свойств сплавов, поскольку они полнее определяются структурой, а не фазовым составом. Опыт показывает, что большие трудности возникают в выполнении именно этой части задания, а в ряде случаев в определении типа (природы) превращений, которые могут протекать в том или ином сплаве из числа заданных, и в целесообразности их термической обработки. Для методической помощи студенту на с. 208 приведено подробное решение одной типовой задачи.  [c.446]

Термомагнитный анализ [9.221. Для определения фазового состава и фазового анализа используют структурно нечувствительное свойство — намагниченность, обычно намагниченность насыщения единицы массы Og. Установка для проведения термомагнитного анализа должна обеспечивать быстрый нагрев образца, чтобы в процессе нагрева и измерений не изменился фазовый состав сплава. Часто для термомагнитного анализа применяют весы Сексмита. Если в сплаве присутствует ферромагнитная фаза, то величина Од пропорциональна количеству этой фазы, а исчезновение у нее с )ерромагнитных свойств отвечает температуре Кюри. Если в структуре присутствуют Две ферромагнитные фазы с различными намагниченностями и и температурами Кюри 00 и 0 j, то на кривой о (Т) наблюдается перегиб, соответствующий температуре 0с,. Поскольку намагниченность насыщения обладает свойством аддитивности, то намагниченность сплава составляет Од = 05,vi + где vi и V2 — массовые доли первой и второй фаз. 0 позволяет, экстраполируя на ось ординат участок кривой Ов (Г), расположенный при температурах выше  [c.110]

Большое значение для свойств рассматриваемых сталей имеют превращения, протекающие при нагреве и, соответственно, получаемое фазовое состояние после охлаждения. Хром сильно увеличивает устойчивость а-состояния стали, настолько сильно, что даже при содержании в стали значительных количеств никеля область существования у-фазы оказывается замкнутой и окруженной а-фазой. В этих условиях (см. рис. 10.2) в сталях со значительным содержанием хрома при нагреве возможны две схемы фазовых превращений. Для сплавов, находящихся в концентрационной области замкнутой петли у-фазы, нагрев в интервале температур существования одной у-фазы должен привести к полной перекристаллизации а у, с получением после охлаждения аустенитного состояния, стабильного или нестабильного, с мартенситом или без него, или же полностью мартенситного состояния в зависимости от условий охлаждения и состава стали. Однако при нагреве этих же сталей до более высоких температур можно получить а + у-область (см. рис. 10.2). По существу, а-фаза будет высокотемпературным б-ферритом. При охлаждении таких сплавов должно произойти обратное а у-превращение. Увеличение содержания хрома или других стабилизирующих феррит элементов приводит к тому, что сталь становится ферритно-аустенитной, соответствующей двухфазной а + у-области на рис. 10.2. Количество феррита в такой стали зависит от соотношения суммарного содержания аустенитообразующих (N1, С, Мп, М) и ферритообразующих (Сг, Мо, , V и др.) элементов и может быть приближенно оценено по структурной диаграмме Шеффлера. Нагрев таких сталей приводит к образованию а- и у-фазы, а охлаждение сохраняет в структуре наряду с аустенитом или продуктами его превращения и определенное количество феррита.  [c.257]

Термолагнитный анализ [31]. Для определения состава и фазового анализа используют структурно-нечувствительное свойство — намагниченность обычно намагниченность насыщения единицы массы Оа. Установка для проведения термомагнитного анализа должна обеспечивать быстрый нагрев образца, чтобы в процессе нагрева и измерений не изменился фазовый состав сплава. Часто для термомагнитного анализа используются весы Сексмита. В случае существования в сплаве магнитной фазы величина сТз сплава будет пропорциональна количеству фазы, а исчезновение ферромагнитных свойств соответствует температуре Кюри фазы. При наличии двух ферромагнитных фаз с различными намагниченностями и и температурами Кюри и 0 - на кривой о Т) будет перегиб, соответствующий температуре 0 . . Поскольку намагниченность насыщения обладает свойством аддитивности, то намагниченность сплава Оа = где VI и Т2 — доли (по массе) первой и второй фаз. Это позволяет, экстраполируя участок кривой Оа (Т), расположенный при температурах выше на ось ординат, определить  [c.318]


Рассмотрим особенности микроструктурных изменений, фазового состава, тонкой структуры сплава МА21 после различных видов обработки, в том числе после СПД, с тем, чтобы установить определенную связь между структурными изменениями и стабильностью механических свойств сплава.  [c.147]

Однако структура тончайших пленок сплавов, кинетика превращений, протекающих в них при термической и химикотермической обработке (кстати, технически нелегко осуществимой), и даже фазовый состав могут быть существенно иными, чем массивных образцов. Большие трудности представляет получение и сохранение определенного химического состава пленок, в частности, в связи с возможными его изменениями при термической обработке. Поэтому в последние годы наряду с возросшим интересом к специфике тонкой структуры пленок, сконденсированных из паров или электроосажденных, наметилась отчетливая тенденция к исследованию пленок, полученных из массивных образцов путем их травления — электролитического, химического или ионной бомбардировкой. Поскольку осуществить однородное (плоское) травление образцов многих металлов и сплавов, особенно со структурными и химическими неоднородностями, практически очень трудно, в ряде работ использован следующий прием 2. Прокатанный или сошлифо-ванный до толщины 0,1—0,2 мм образец — пластинку подвергают локальному полирующему травлению (возможно более медленному) в нескольких точках с помощью подвижных острых электродов — до образования нескольких сквозных отверстий затем травят всю поверхность пластинки до тех пор, пока перемычки между отверстиями не становятся достаточно тонкими для прямого исследования в электронном микроскопе или электронографе. Травление нои-  [c.169]

Еще в начале XX в. было обнаружено, что при деформировании материалов на основе свинца, алюминия, цинка, олова, железа, кадмия и др. в определенных темоературно-скоростных условиях резко падает сопротивление дефЪрмированию этих материалов и становятся чрезвычайно высокими показатели их пластичности, также значительно уменьшаемся твердость. Впервые это явление изучили в 1945 г. советские ученые А. А. Бочвар и Э. А. Свидерская, исследуя свойства алюминиевых и цинковых сплавов. Такое состояние материалов было названо сверхпластичностью. Гипотеза о природе этого эффекта была выдвинута А. А. Бочваром. Суть ее заключается в том, что в состоянии сверхпластичности основную роль в механизме деформации играет межзеренная деформация, а появляющиеся при деформировании дефекты залечиваются вследствие интенсивного перемещения (диффузии) атомов различных фаз. Впоследствии было установлено, что сверхпластичность имеет две разновидности. Первую разновидность, проявляющуюся у металлов и сплавов с особо мелким зерном, называют структурной. Ее отличительными признаками являются зависимость эффекта от исходного размера зерен, с уменьшением которого проявление эффекта сверхпластичности увеличивается, а также то, что в процессе деформирования размеры и форма зерен практически не изменяются. Вторая разновидность сверхпластичности проявляется у полиморфных металлов и сплавов при их деформировании в процессе фазового превращения и характеризуется постоянным изменением фазового состава и структуры материала в процессе деформирования. Известно, например, что железо может существовать с двумя типами кристаллической решетки — объемноцентрированной (а-железо) в диапазоне температур до 910°С и от 1400 до 1539°С и гранецентрированной (у-железо) при температурах от 910 до 1400°С. Если образец деформиро-  [c.34]


Смотреть страницы где упоминается термин Определение фазового (структурного) состава сплава : [c.67]    [c.377]    [c.55]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Определение фазового (структурного) состава сплава



ПОИСК



Определение фазового состава

Состав сплава структурный

Состав фазовый

Сплавы Состав

Фазовый состав сплавов



© 2025 Mash-xxl.info Реклама на сайте