Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент амплитуды асимметрии цикла

Только схематично, исходя из общих закономерностей влияния средних (постоянных) напряжений цикла на предельные амплитуды (см. гл. П), можно считать, что остаточные напряжения, подобно средним напряжениям, способны изменять предельные амплитуды по следующей зависимости где Ста — предельная амплитуда для сварного соединения с остаточными напряжениями Oq a i — предел выносливости соединения, без остаточных напряжений (при симметричном цикле осевого растяжения или изгиба) фа — коэффициент влияния асимметрии цикла (равный для конструкционных сталей 0,1—0,4).  [c.34]


В зависимости от характера изменения действующей нагрузки в детали возникают напряжения, которые изменяются по симметричному, асимметричному или пульсирующему циклам. Характеристиками каждого цикла являются максимальное и минимальное напряжения, среднее напряжение а , амплитуда цикла и коэффициент г асимметрии цикла. Соотношения между характеристиками для указанных циклов приведены в табл. 42.  [c.197]

Так как коэффициент влияния асимметрии цикла г 3а для болтов очень мал, то расчет болта на выносливость по запасу прочности по амплитуде производится по формуле, аналогичной формуле (27), но без учета влияния качества поверхности.  [c.118]

Так как коэффициент влияния асимметрии цикла для болтов очень мал, то расчет болта на выносливость по запасу прочности по амплитуде производится по формуле (см. формулу 21)  [c.60]

Обычно испытания проводят при симметричных знакопеременных циклах (коэффициент асимметрии цикла г = — 1), у которых амплитуда напряжений наибольшая, а предел усталости наименьший (рис. 159, д, нижняя линия). С повышением г пределы выносливости возрастают и при значениях г, близких к единице (колебания малой амплитуды), становятся практически постоянными (верхняя линия) и равными показателям статической прочности.  [c.276]

Развитие этих деформаций и повреждений по мере накопления числа циклов зависит от таких важных факторов, как уровень эксплуатационных нагрузок, циклические свойства материалов, максимальные температуры и длительность нагружения в цикле. Если температуры эксплуатации сравнительно невелики и не связаны с образованием статических и повторных деформаций ползучести, то в методах расчета конструкций на малоцикловую прочность температурно-временные эффекты не учитываются. Это обстоятельство позволяет существенно упростить методику расчета в расчете прочности и долговечности в качестве исходных для заданного режима эксплуатации устанавливаются амплитуды местных, упругопластических деформаций, коэффициенты асимметрии цикла и число циклов нагружения.  [c.370]

Что называется средним, максимальным и минимальным напряжением, амплитудой, коэффициентом асимметрии цикла напряжений  [c.567]

Коэффициентом. амплитуды (или асимметрии) цикла называется отношение наименьшего напряжения к наибольшему, взятое с учетом знака  [c.348]

Любое циклическое деформирование в общем виде характеризуется некоторым сочетанием параметров, важнейшими из которых являются максимальное Отах и минимальное Отш напряжения цикла, среднее напряжение От, амплитуда Оа цикла, а также коэффициент асимметрии R. Эти параметры связаны соотношениями  [c.81]


Влияние асимметрии цикла нагружения. Одним из основных параметров циклического деформирования, оказывающим существенное влияние на сопротивление усталости материалов, является асимметрия цикла нагружения. Это влияние можно наблюдать на обеих стадиях усталости до образования усталостной трещины и при ее развитии. В общем случае увеличение коэффициента асимметрии цикла нагружения приводит к более раннему возникновению усталостных трещин и уменьшению скорости их развития. С увеличением асимметрии цикла нагружения увеличивается также пороговое значение амплитуды коэффициента интенсивности напряжений, ниже которого не происходит роста усталостных трещин.  [c.88]

Основные пороговые значения амплитуды коэффициента интенсивности напряжений о A " углеродистых сталей I и П при различных коэффициентах асимметрии цикла нагружений  [c.134]

На рис. 2 представлено изменение коэффициентов фд, фр, ф отношения Eg амплитудных значений напряжения и деформации и отношения pg амплитудных значений поперечной и продольной деформации в зависимости от числа циклов при амплитуде напряжения (Та = 199 МПа. Исследована сталь 45 при нагружении в условиях растяжения — сжатия с коэффициентом асимметрии цикла Н =  [c.22]

Влияние на величину предела выносливости состояния поверхности образцов и масштабного фактора подробно описано в работах [3, 22, 97 ]. Зависимость предела выносливости от коэффициента асимметрии цикла R принято изображать графическим, причем из ряда возможных диаграмм [81 получили достаточно широкое распространение две диаграмма предельных амплитуд (диаграмма Хея) и диаграмма предельных размахов (диаграмма Смита). Эти диаграммы можно отнести как к абсолютным пределам выносливости, так и к условным пределам выносливости, отвечающим любым числам циклов до разрушения.  [c.21]

Коэффициент асимметрии цикла 1 Предельная амплитуда в долях Од Коэффициент асимметрии цикла Предельная амплитуда в долях  [c.319]

Эквивалентные напряжения симметричного цикла по указанным зависимостям определяются в предположении независимости эффективного коэффициента концентрации от асимметрии цикла, и эффект концентрации напряжений относится к переменной составляющей напряжений (т. е. к их амплитуде). На фиг. 30 представлена зависимость ka от  [c.501]

При испытании образцов с постоянным коэффициентом асимметрии цикла предел ограниченной выносливости определяется как наибольшее значение амплитуды напряжений цикла, при действии- которой образец еще не разрушается при определенном (задаваемом) числе. циклов.  [c.6]

По указанному ГОСТу коэффициент асимметрии цикла обозначается / а или Кх. Встречающиеся в учебной литературе наименования коэффициент иесимметрии цикла , коэффициент амплитуды , характеристика цикла не должны применяться. Кстати, характеристикой цикла принято называть отношение  [c.172]

Влияние среднего (постоянного) напряжения цикла (ст т ) на сопротивление металлов усталости заключается в том, что с ростом средних растягивающих напряжений предельная амплитуда цикла (Та (пред) уменьшнется, а с ростом средних сжимающих напряжений Оа (пред) увеличивается (рис. 8). Количественно эта закономерность выражается в виде коэффициентов влияния асимметрии цикла  [c.15]

Тепловыделение в микрообъемах тем больше, чем больше амплитуда напряжений и меньше коэффициент асимметрии цикла. С другой стороны величина местного повышения температуры зависит от свойств материала и его структурных составляющих. Повышение температуры в микрообъемах тем больше, чем меньше теплопроводность и теплоемкость материала и выше его циклическая вязкость, определяюндая (на стадии упругих деформаций) долю необратимого превращения энергии колебаний в тепловую энергию.  [c.288]

Рмакс = Ра Рыт Рс Ра-Удвоенная величина амплитуды колебаний напряжений называется размахом цикла. Отношение минимального напряжения цикла к максимальному с учетом знаков этих напряжений называется характеристикой цикла или коэффициентом асимметрии цикла, н обозначаетОА буквой г, т. е.  [c.592]


Задача 1023. Стальная деталь должна работать при знакопеременном изгибе с амплитудой напряжений о =200 М.н/м при коэффициенте запаса прочности [/г]=2. Каким должен быть коэффициент асимметрии цикла г, если О ,==1100 Мн/м , =900 Мн1м , а ,=480 Мн/м -, а, =1,2 =0,9,. =0,8 =1 р=1,4.  [c.434]

Впервые циклическая долговечность для симметричного цикла была исследована Велером, который установил, что каждой амплитуде Оа соответствует своя циклическая долговеч-ность N, т. е. число циклов напряжений, Е1ыдерживаемых кон- О N струкцией до усталостного разрушения. График, характери- Рис. 8.20 зующий зависимость между амплитудами цикла Оа и циклической долговечностью N для одинаковых образцов, построенный по параметру коэффициента асимметрии цикла (рис. 8.20), носит название кривой усталости. Для сталей кривая усталости при некотором напряжении a/j, называемом пределом выносливости, имеет тенденцию выхода на асимптоту, параллельную оси ON. При N 10 кривая усталости практически приближается к этой асимптоте. Таким образом, при а с практически разрушение не происходит при очень большом числе циклов. Однако у материалов типа алюминия, меди и других не существует определенного предела выносливости и кривая усталости приближается к оси ON при большом числе циклов. Для таких материалов назначается предел ограниченной выносливости а/ лг — наибольшее напряжение цикла, которое материал выдерживает при заданном Обычно yV ,p = ]0 (рис. 8.21).  [c.173]

При этом величина ф = (20 i—оо)/(То является коэффициентом чувствительности к асимметрии цикла, характеризующим уменьшение предельной амплитуды из-за наличия статической составляющей. В зависимости от характера материала величина изменяется обычно в пределах от 0,1 до 0,3.  [c.120]

По мере перехода от зоны ЗК с максимальным растягивающим напряжением к ее центра.яьному отверстию, где она располагается на валу редуктора, напряжения от контакта зубьев уменьшаются из-за их перераспределения между соседними зубьями и ограниченным перемещением или возможной деформацией самих зубьев. При этом динамические напряжения от вращения ЗК возрастают и нарастает максимальный уровень коэффициента интенсивности напряжения, если рассматриваемая траектория изменения напряжений вдоль радиуса колеса совпадает с траекторией возрастающей длины усталостной трещины. По мере продвижения усталостной трещины от периферии ЗК к ее оси происходит нарастание асимметрии цикла нагружения при уменьшении амплитуды переменных напряжений. Возникает естественный вопрос о длительности процесса зарождения и последующего роста трещины на основе анализа вида повреждающего цикла нафужепия, который определяет продвижение трещины в ЗК за один цикл запуска и остановки двигателя.  [c.680]

ВИЯХ МОНОТОННОГО нагружения опре-деляется соотношением N Л Л " при пластической деформации N = = а д, откуда N — adVJdi, где А, а, т параметры, характеризующие объект контроля Уд — объем материала, подвергнутого пластической деформации. Энергия, освобождаемая при дискретном перемещении трещины, пропорциональна квадрату амплитуды акустического сигнала Современная аппаратура позволяет обнаруживать сигналы от уста лостных трещин, развивающихся со скоростью Ш . ..1Сг м/цикл Приведем некоторые результаты исследований, показывающих возможности способа [14]. Исследовали параметры АЭ при по вторпо-статическом нагрул<ении надрезанных образцов из стали марок ЗОХГСА и ЗЙХГСНА при развитии усталости, обусловленной циклическим нагружением. Плоские образцы в закаленном состоянии подвергали циклическому растяжению (коэффициент асимметрии цикла 0,2 частота 0,3 Гц). Регистрировали суммарный счет N, пиковые амплитуды сигналов и их распределение. Рабочая полоса пропускания ограничивалась сверху частотами 200. .. 250 кГц при уровне дискриминации 1 В. Резонансная частота пьезопреобразователя /,, 3 == 250 кГц. Деформацию образца измеряли растровым фотоэлектрическим преобразователем с чувствительностью 1 В/мкм.  [c.448]

Изменение асимметрии цикла нагружения в вершине трещины с ее ростом. Перераспределение напряжений от внешней нагрузки, действующих в области вершины трещины в полу-циклах растяжения и сжатия, может вызывать остановку развития усталостной трещины. Анализ такого перераспределения был проведен в работах И. В. Кудрявцева и В. Линхарта. На рис. 9,а показана схема распределения осевых напряжений в образце с концентратором, полученная при испытании на усталость при симметричном цикле напряжений (растяжения-сжатия) с амплитудой номинального напряжения Оц. До возникновения усталостной трещины эпюры растягивающих и сжимающих напряжений идентичны, а материал в области вершины концентратора реально подвергается нагружению по симметричному циклу с амплитудой а Оп и R = — (цикл 1—2). Если эта амплитуда превышает предел выносливости исследуемого материала, то в вершине надреза возникает усталостная трещина. После ее развития на глубину I распределение сжимающих напряжений не изменится, так как трещина, сомкнувшись, будет передавать нагрузку как исходное неповрежденное сечение, а по величине сжимающие напряжения при вершине трещины уменьшаются растягивающие напряжения сконцентрируются в вершине трещины, максимум их будет соответствовать величине аат(Тн(а(гт — теоретический коэффициент концентрации напряжений для трещины глубиной h + l).  [c.23]

При нагружении с характеристикой цикла R>Ra диаграмма выносливости для гладких деталей выходит за значения предела текучести при растяжении. В этом случае во время первых циклов нагружения в области вершины концентратора материал переходит из упругого состояния в пластическое, что приводит при разгрузке к возникновению в этой области остаточных напряжений сжатия. Предельное максимальное напряжение цикла (Г (oak + omk) при соблюдбнии указанных ранее допушений постоянно и равно пределу текучести при растяжении (Тт.р- В результате этого создается положение, когда независимо от дальнейшего внешнего изменения R реальный коэффициент асимметрии цикла остается постоянным и равным Ra, а сопротивление усталости не изменяется. Соответствующую амплитуду номинального переменного напряжения в этой области можно определить из уравнений (8) и (10)  [c.50]


Глубина нераспространяющейся усталостной трещины увеличивается с ростом уровня амплитуды или максимальных напряжений цикла нагрузки, причем тем интенсивнее, чем больше коэффициент асимметрии цикла нагружения. Детали с усталостными трещинами одного размера могут выдерживать без разрушения тем более высокие амплитуды цикла напряжений,, чем больше среднее напряжение цикла смещено в сторону сжатия. На рис. 56 приведены зависимости глубины нераспро-страняющнхся усталостных трещин, возникших в призматических образцах (40x40 мм) с концентратором напряжений из стали 45 при асимметричном цикле нагружения с различными напряжениями сжатия. Увеличение среднего сжимающего напряжения снижает рост размера нераспространяющейся усталостной трещины.  [c.136]

Натурные и модельные тензометрические исследования трубопроводов, внутрикорпусных устройств ВВЭР [10, 13, 16] показали наличие высокочастотных вибрационных напряжений преимущественно с небольшими аляшитудами, действующих на фоне низкочастотных напряжений с большими амплитудами от основных нагрузок. Эти вибрационные (в том числе резонансные) напряжения обусловлены гидро- и аэродинамическими усилиями от потоков теплоносителя, механическими колебаниями и сейсмическими усилиями, характеризующимися большими коэффициентами асимметрии цикла и суммарным числом циклов (10 —10 ). Применительно к такому характеру двухчастотного длительного нагружения в последние годы осуществлен ряд исследований, позволяющий дать оценку снижения малоциклового ресурса конструкций за счет наложения вибрационных напряжений [16, 21].  [c.42]


Смотреть страницы где упоминается термин Коэффициент амплитуды асимметрии цикла : [c.511]    [c.141]    [c.229]    [c.177]    [c.365]    [c.91]    [c.284]    [c.679]    [c.251]    [c.413]    [c.30]    [c.238]    [c.190]    [c.91]    [c.257]    [c.138]    [c.102]    [c.90]    [c.92]    [c.88]    [c.136]    [c.172]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.279 ]



ПОИСК



Амплитуда

Амплитуда цикла

Асимметрия

Асимметрия цикла

Коэффициент асимметрии

Коэффициент асимметрии цикла

Коэффициент асимметрии цикла асимметрии цикла

Коэффициент цикла



© 2025 Mash-xxl.info Реклама на сайте