Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электроизоляционные материалы (диэлектрики)

Используемые в качестве электроизоляционных материалов диэлектрики называются пассивными диэлектриками. В настоящее время широко применяются так называемые активные диэлектрики, параметры которых можно регулировать изменяя напряженность электрического поля, температуру, механические напряжения и другие параметры воздействующих на них факторов. Например, конденсатор, диэлектрическим материалом в котором служит пьезоэлектрик, под действием приложенного переменного напряжения изменяет свои линейные размеры и становится генератором ультразвуковых колебаний. Емкость электрического конденсатора, выполненного из нелинейного диэлектрика—сегнетоэлектрика, изменяется в зависимости от напряженности электрического поля если такая емкость включена в колебательный L -контур, то изменяется и его частота настройки.  [c.133]


Электроизоляционные материалы (диэлектрики). используют для образования электрической изоляции, окружаюш,ей со всех сторон токопроводящие части электрических устройств и разделяющей друг от друга части, между которыми существует электрическое напряжение, т. е. части, находящиеся под различными электрическими потенциалами. Назначение электрической изоляции — не допускать прохождения электрического тока какими-либо нежелательными путями, помимо путей, предусмотренных схемой электрической установки.  [c.7]

Как показывает само название, полупроводники образуют некоторую промежуточную область между электроизоляционными материалами (диэлектриками) и проводниковыми материалами.  [c.193]

Электроизоляционные материалы (диэлектрики) — огромный класс материалов, обладающих очень большим (р = 10 - 10 Ом-м) объемным сопротивлением, позволяющим использовать их для изоляции токопроводящих частей различных машин, приборов и т. д.  [c.192]

Все электроизоляционные материалы — диэлектрики — в рабочем режиме являются средой электрического поля. Диэлектрики вместе с токопроводящими металлическими деталями, находящимися под разными потенциалами, образуют конденсатор, схематически показанный на рис. 2-1. Металлические обкладки — электроды — или обе изолированы от земли, или одна из них заземлена, что не меняет  [c.12]

Электроизоляционными материалами (диэлектриками) называют такие материалы, с помощью которых осуществляют изоляцию каких-либо токопроводящих частей, находящихся под разными электрическими потенциалами. Электроизоляционные материалы обладают очень большим электрическим сопротивлением. Их удельное объемное сопротивление ро=10 —10 Ом-м, тогда как у проводников оно составляет лишь Ю —10 Ом-м.  [c.4]

ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ (ДИЭЛЕКТРИКИ)  [c.5]

Электроизоляционными материалами (диэлектриками) называют такие материалы, с помощью которых осуществляют изоляцию, т. е. препятствуют утечке электрического тока между какими-либо токопроводящими частями, находящимися под разными электрическими потенциалами. Диэлектрики обладают очень большим электрическим сопротивлением. Так, удельное объемное сопротивление диэлектриков = 10 —10 ом см, а у проводников оно составляет лишь 0 б—10 ом-см.  [c.4]

Электроизоляционные материалы — диэлектрики могут быть твердыми, жидкими и газообразными. Наибольшее применение при ремонте электрических машин имеют твердые диэлектрики. При ремонте трансформаторов, наряду с твердыми диэлектриками, применяется жидкий — трансформаторное масло. Газообразные диэлектрики практически не применяются при ремонте и нами не рассматриваются.  [c.3]


П6.1. в электро-и радиоэлектронной промышленности широко применяются различные электроизоляционные материалы неорганические диэлектрики, пленки, пластмассы и т. д.  [c.269]

Статистическая обработка результатов испытаний. Процессы, протекающие в электроизоляционных материалах, в особенности такие, как механическое разрушение, электрический пробой, подчиняются статистическим закономерностям, и измеряемая величина для одного и того же материала при одинаковых условиях испытаний может претерпевать заметные колебания. Рассмотрим, например, определение электрической прочности. При определении электрической прочности твердых материалов после пробоя образец приходит в негодность, и для повторного определения Е р необходимо брать новый образец. При испытаниях газообразных и жидких веществ можно производить ряд повторных пробоев одного и того же образца (очищая периодически, если необходимо, электроды), так как после пробоя и выключения напряжения электрическая прочность восстанавливается при испытаниях жидких диэлектриков удаляют, кроме того, копоть, образующуюся между электродами.  [c.10]

Испытания электроизоляционных материалов и изделий в условиях воздействия короны и появляющегося при этом озона рассматривались ранее, в 6-1. Следует добавить, что озон, как наиболее активный агрессивный фактор, разрушающе действует на больщинство органических диэлектриков, и в первую очередь это сказывается на их физико-механических характеристиках. По этой причине в ряде случаев проводятся специальные испытание материала на стойкость к озонному старению.  [c.193]

Диэлектрики используются в качестве электроизоляционных материалов, т. е. их назначение - препятствовать прохождению электрического тока.  [c.5]

Электротехнические материалы разделяются на три группы металлы, неметаллические материалы (электроизоляционные материалы или диэлектрики) и полупроводники. В данном учебном пособии рассматриваются электротехнические материалы двух групп металлы и полупроводники. В связи с задачами курса в учебном пособии большое внимание уделяется эксплуатационным характеристикам материалов. Современное развитие науки о металлах характеризуется возрастанием роли физических представлений. Поэтому в учебном пособии главам, посвященным конкретному изучению свойств отдельных групп электротехнических материалов, предшествуют главы, в которых рассматриваются некоторые вопросы физического металловедения.  [c.4]

Электроизоляционные материалы отличаются очень малой удельной электрической проводимостью. Количественно разница между проводимостью диэлектриков и проводников столь велика, что она обусловливает и качественную раз-  [c.4]

Миграционная поляризация. Электроизоляционные материалы могут быть неоднородными, состоящими из диэлектриков, у которых Ер и о различаются. На рис. 5.17, а схематически изображен электрический конденсатор с неоднородным (двухслойным) диэлектриком, а на рис. 5.17, в — состоящим из многих блоков, как это имеет место, например, в поликристаллическом материале.  [c.156]

Ч-20)- Ю К" . Весьма мал ТК I кварцевого стекла 0,055 х 10 К . поэтому изделия из него не разрушаются при резких перепадах температур. В композиционном электроизоляционном материале, состоящем из диэлектриков с разными ТК /. при нагревании или охлаждении возникают внутренние механические напряжения. При многократном повторении цикла нагрев — охлаждение в таких материалах образуются трещины, расслоения и другие механические  [c.188]

Физико-химические свойства диэлектриков. Электроизоляционные материалы имеют самую различную стойкость к разрушению (коррозии) при контактировании с водой, кислотами, щелочами, солевыми растворами, маслами, топливами, газами. При определении химостойкости образцы длительное время выдерживаются в условиях, наиболее близких к эксплуатационным, после чего определяют изменение их внешнего вида, массы, электрических и других параметров. Например, в нефтяных маслах при эксплуатации происходит коррозия погруженных в масло изоляции и металлов, в процессе которой образуются кислоты и масло стареет. Кислоты содержат и плохо очищенное масло. Количество кислоты в масле характеризуется кислотным числом, равным количеству граммов едкого калия, необходимого для нейтрализации всех свободных кислот, содержащихся в 1 кг испытуемого материала.  [c.191]

Кроме природных слюд применяются также и синтетические. Слюда является весьма ценным природным минеральным электроизоляционным материалом. Использование ее в качестве изоляции крупных Турбо-и гидрогенераторов, тяговых электродвигателей и в качестве диэлектрика в некоторых конденсаторах связано с ее высокой электрической прочностью, нагревостойкостью, механической прочностью и гибкостью. В природе слюда встречается в виде кристаллов, которые способны легко расщепляться на пластинки по параллельным друг другу плоскостям (плоскостям спайности).  [c.231]


Диэлектрические потери в электроизоляционном материале можно характеризовать рассеиваемой мощностью, отнесенной к единице объема, или удельными потерями чаще для оценки способности диэлектрика рассеивать мощность в электрическом поле пользуются углом диэлектрических потерь, а также тангенсом этого угла.  [c.44]

Недопустимо большие диэлектрические потери в электроизоляционном материале вызывают сильный нагрев изготовленного из него изделия и могут привести к его тепловому разрушению. Даже если напряжение, приложенное к диэлектрику, недостаточно велико для того, чтобы за счет диэлектрических потерь мог произойти недопустимый перегрев, то и в этом случае большие диэлектрические потери могут принести существенный вред, увеличивая, например, активное сопротивление колебательного контура, в котором использован данный диэлектрик, а следовательно, и величину затухания.  [c.44]

Для электроизоляционных материалов анизотропного строения (слоистых, волокнистых) значения механической прочности сильно зависят от направления приложения нагрузки. Важно отметить, что для некоторых диэлектриков (стекло, керамические материалы, многие пластмассы) предел прочности при сжатии значи-тельно больше, чем при растяжении и изгибе (в то время как у металлов Ор, Од и о имеют один и тот же порядок). Так, например, у кварцевого стекла при сжимающих напряжениях можно получить Оо я 200 МПа, а при растяжении о 50 МПа.  [c.78]

В качестве примера в табл. 5-2 приведены средние ТК I некоторых электроизоляционных материалов при температуре 20—100 °С. Как видно из табл. 5-2, органические диэлектрики имеют резко повышенные ТК I по сравнению с неорганическими диэлектриками. Поэтому детали, изготовленные из неорганических материалов, имеют улучшенную стабильность размеров при колебаниях температуры.  [c.85]

Кроме того, электроизоляционные материалы используются в качестве диэлектриков в электрических конденсаторах для создания определенного значения электрической емкости конденсатора, а в некоторых случаях для обеспечения определенного вида зависимости этой емкости от температуры или иных факторов.  [c.89]

Электроизоляционные материалы подразделяются на газообразные (прежде всего воздух), жидкие (различные масла и крем-нийорганические жидкости) и твердые — органические (смолы, пластмассы, парафины, носки, битумы, ткани, картон, бумага, дерево) и неорганические (наиболее распространены слюда, стекло, керамика). Диэлектриками являются и многие горные породы.  [c.149]

Для рудничного электрооборудования и электрооборудования угольных шахт не допускается применение гигроскопических диэлектриков, имеющих влагопоглощение за 24 ч более 2% (например, шифер, мрамор, древесина и т.п.). Электроизоляционные материалы для деталей рудничного и шахтного оборудования должны обладать  [c.96]

Диэлектриками называются вещества, основным электрическим свойством которых является способность поляризоваться в электрическом поле. Электроизоляционными материалами называют диэлектрические материалы, предназначенные для создания электрической изоляции токоведущих частей электротехнических установок. Изолятором называется изделие из электроизоляционного материала, задачами которого являются крепление и изоляция друг от друга проводников, находящихся под различными потенциалами пример — изоляторы воздушных линий электропередачи. Электрической изоляцией называется электроизоляционная система определенного конкретного электротехнического изделия, выполненная из одного или нескольких электроизоляционных материалов.  [c.158]

Жидкие и полужидкие материалы нефтяные масла (трансформаторное, конденсаторное, кабельное) и синтетические диэлектрики (совол, совтол, ПЭС-Д, ПМС-ЮД), а также широкий класс электроизоляционных материалов (лаки, эмали, компаунды, клеи)..  [c.159]

Для электроизоляционных материалов решающее значение имеет их стойкость к нагреву, т.е. способность без ущерба для свойств выдерживать нагрев в течение длительного времени. По этой стойкости диэлектрики разделяют на классы (ГОСТ 8865-93) Y, А, Е, В, F, Н и др. В классе Y объединены наименее стойкие целлюлозные, шелковые и полимерные материалы, для них рабочая температура не превышает 90°С. Самыми стойкими к нагреву являются слюда, керамика, стекло, ситаллы, а также полиимиды и фторопласт-4. Они выдерживают длительный нагрев 180 °С и выше.  [c.603]

Основное назначение жидких электроизоляционных материалов (диэлектриков) — отвод теплоты от обмоток и магнитопроводов в трансформаторах, гашение дуги в масляных выключателях, усиление твердей изоляции в трансформаторах, маслонаполненных вводах, конденсаторах, маслопропитанных и маслонаполненных кабелях.  [c.4]

Все электроизоляционные материалы — диэлектрики в рабочем режиме являются средой электрического поля. Диэлектрики вместе с токопроводящими металлическими деталями, находящимися под разными потенциалами, образуют конденсатор, схематически показанный на рис. 2-1. Металлические обкладки — электроды — или обе изолированы от земли, или одна из них заземлена, что не меняет схемы принципиально. В идеальной среде электрического поля с электропроводностью, равной нулю, при приложении переменной разности потенциалов к электродам при возникновении электрического поля через диэлектрик Рис. 2-1. Твер-будет проходить только емкостный ток, дый диэлектрик реактивный, не вызывающий выделения между элек-тепла. Как известно, величина емкостно- тродами. го тока определяется формулой  [c.19]

Термопластичные полимеры относятся к числу электроизоляционных материалов (диэлектриков). Их электрические свойства [40, 79] определяются полярностью звеньев и в значительно меньшей степени физической структурой и физическим состоянием. Среди основных термопластичных полимеров неполярными являются полиолефины, политетрафторэтилен и полистирол, полярными — все гетероцепные полимеры и карбоцепные с полярными звеньями — полиакрилаты, поливинилхлорид и политрифторхлорэтилен. Полярные термопластичные полимеры в свою очередь можно условно подразделить на слабополярные (полифениленоксид, полисульфон, поликарбонат, полиарилат, нентанласт, политрифторхлорэтилен) и сильнополярные (полиамиды, полиформальдегид, поливинилхлорид, полиметилметакрилат). Важнейшими показателями электрических свойств полимеров являются электрическое сопротивление, электрическая прочность и диэлектрические свойства.  [c.59]


В книге освещены вопросы физики диэлектриков, физико-механических свойств диэлектриков и их поведение в эксплуатации. Рассмотрены газообразные и жидкие диэлектрики, твердые электроизоляционные материалы проводниковые, полупроводникоаь(е и /магнитные материалы.  [c.2]

Слюда и слюдяные электроизоляционные материалы. Слюда в чистом виде применяется как основной диэлектрик конденсаторов и межэлект-родная изоляция в электронных лампах. В сочетании с различными склеивающими и волокнистыми материалами (подложками) широко применяется для изготовления различных видов электроизоляционных материалов.  [c.106]

Каковы преимущества газообразных диэлектриков перед остальнымч видами электроизоляционных материалов  [c.247]

Природа диэлектрических потерь в электроизоляционных материалах различна в зависимости от агрегатного состояния вещества. Диэлектрические потерн могут обусловливаться сквозным током или, как указывалось при рассмотрении явления поляризации, активными составляющими токов смещения. При изучении диэлектрических потерь, непосредственно связанных с поляризацией диэлектрика, можно характеризовать это явление поляризации кривыми, представляющими зависимость электрического заряда на электродах конденсатора с даниы.м диэлектриком от приложенного к конденсатору напряжения (рис. 3-1). При отсутствии потерь, вызываемых явлением поляризации, заряд линейно зависит от напряжения (рис, 3-1, а) и такой диэлектрик называется линейным. Если в линейном диэлектрике наблюдается замедленная поляризация, связанная с потерями энергии, то кривая зависимости заряда от напрял<ения приобретает вид эллипса (рис. 3-1,6). Площадь 31 ого  [c.44]

В технических электроязоляционных материалах, помимо потерь от сквозной электропроводности и потерь от замедленной поляризации, возникают диэлектрические потери, которые сильно влияют на электрические свойства диэлектриков. Эти потери вызываются наличием изолированных друг от друга посторонних проводящих или гюлуироводящих включений углерода, оксидов железа они значительны даже при малом содержании таких примесей в электроизоляционном материале.  [c.45]

Значения Ух электроизоляционных материалов за исключением оксида бериллия меньше, чем большинства металлов. Наименьшими значениями обладают пористые электроизоляционные материалы с воздушными включениями. При иропитке, а также при уплотнении материалов давлением Ут увеличивается. Как правило, кристаллические диэлектрики имеют более высокие значения чем аморфные. Кроме того. Ух зависит от температуры.  [c.84]

Наибольшая часть содержания гл. 6 посвящена электроизоляционным материалам, которые образуют самый многочисленный тип электротехнических материалов вообще, однако невозможно описать се виды электроизоляционных материалов. Поэтому основная задача — дать представление об основах рациональной классифика-дии электроизоляционных материалов и общие для тех или иных -рупп этих материалов особенности. Будут описаны также некото-рые наиболее типичные и широко распространенные виды современных электроизоляционных материалов, причем их параметры и зависимости последних от ра )личных факторов будут использоваться 1,ля иллюстрации обш,их положений учения о диэлектриках.  [c.89]

Стеклоэмалями или просто эмалями (не смешивать с лаковыми эмалями ) называются стекла, наносимые тонким слоем на поверхность металлических и других предметов с целью защиты от коррозии, придания определенной окраски и улучшения внешнего вида, создания отражающей поверхности (эмалированная посуда, абажуры, рефлекторы, декоративные эмали и т. п.). Эмали получаются сплавлением измельченных составных частей шихты, выливанием расплавленной массы тонкой струей в холодную воду и размолом полученной фритты на шаровой мельнице в тонкий порошок. Иногда к фритте перед ее размолом добавляются небольшие количества глины и других веществ. Для нанесения эмали на различные предметы нагретый в печи до соответствующей температуры предмет посыпается порошком эмали, которая оплавляется и покрывает его прочным стекловидным слоем если требуется, покрытие повторяется несколько раз до получения слоя нужной толщины во время оплавления эмалируемый предмет (например, трубчатый резистор) может медленно вращаться в печи для более равномерного покрытия. Важно, чтобы а/ эмали был приблизительно равен а материала, на который наносится эмаль, иначе эмаль будет давать мелкие трещины (цек) при резкой смене температур. При эмалировании предметов из стали или чугуна для улучшения сцепления эмали с металлом производят предварительное покрытие металла грунтовой эмалью (с содержанием оксидов никеля или кобальта) на нее уи е наносится основная эмаль любой окраски. Важная область применения стеклоэмалей в качестве электроизоляционных материалов — покрытие трубчатых резисторов. В этих резисторах на наружную поверхность керамической трубки нанесена проволочная обмотка (из нихрома или константана), поверх которой наплавляется слой эмали, создающий изоляцию между отдельными витками обмотки и окружающими предметами и защищающий обмотку от влаги, загрязнения и окисления кислородом воздуха при высокой рабочей температуре (примерно 300 °С), Кроме того, стеклоэмали используются в электроаппаратостроении для получения прочного и нагревостойкого электроизоляционного покрытия на металле, а также для устройства вводов в металлические вакуумные приборы. Стеклоэмали применяются и в качестве диэлектрика в некоторых типах конденсаторов.  [c.165]

Слюда является важнейшим из природных минеральных электроизоляционных материалов. Благодаря ее исключительно ценным качествам высокой электрической прочности, нагревостойкости, влагостойкости, механической прочности и гибкости слюду применяют в ответственных случаях, в частности в качестве изоляции электрических машин высоких напряжений и больших мош,ностей (в том числе крупных турбогенераторов и гидрогенераторов, тяговых электродвигателей) и в качестве диэлектрика в некоторых конструкциях конденсаторов. Слюда встречается в природе в виде кристаллов, характерной особенностью которых является способность легко расш,епляться на пластинки по параллельным друг другу плоскостям (плоскости спайности). Богатые месторождения слюд имеются и в нашей стране. Из зарубежных стран крупнейшими слюдяными месторождениями располагает Индия.  [c.175]

Диэлектрики используются главным образом как электроизоляционные материалы. Пьезоэлектрики применяются для преобразования звуковых колебаний в электрические и наоборот пироэлектрики — для индикации и измерения интенсивности инфракрасного излучения сег-нетоэлектрики — как нелинейные элементы в радиоэлектронике. Из жидких диэлектриков наибольшее применение имеют минеральные масла (в трансформаторах, конденсаторах и т.д.).  [c.95]

Коэффициент затухания а характеризует уменьшение электромагнитной энергии при распространении её по кабелю. Уменьшение или затухание энергии объясняется потерями её в линии передачи. Различаются два вида потерь потери в металле и потери в изоляции. При прохождении тока по кабелю происходит нагревание внутреннего и внешнего проводников и возникают потери энергии (джоулевы потери). Потери в изоляции обусловлены несовершенством применяемых электроизоляционных материалов и затратами энергии на диэлектрическую поляризацию. Как потери в Meraj ie, так и потери в диэлектрике с ростом частоты увели-  [c.324]


Смотреть страницы где упоминается термин Электроизоляционные материалы (диэлектрики) : [c.26]    [c.80]    [c.180]    [c.148]    [c.4]   
Смотреть главы в:

Справочник молодого электрика по электротехническим материалам и изделиям Издание 2  -> Электроизоляционные материалы (диэлектрики)



ПОИСК



Диэлектрик

Методика определения tg6 и р жидких диэлектриМетоды определения е, tg 6 и pv пористых электроизоляционных материалов, пропитанных жидким диэлектриком

Свойства электроизоляционных материалов при криогенных температурах Голубков, Л. Н. Савельева Газообразные диэлектрики

Химические и физические изменения в твердых, жидких и газообразных диэлектриках при облучеЭлектропроводность облученных электроизоляционных материалов

ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Поляризация диэлектриков

Электроизоляционные материалы

Электроизоляционные материалы Свойства диэлектриков



© 2025 Mash-xxl.info Реклама на сайте