Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рабочий процесс и динамика поршней

РАБОЧИЙ ПРОЦЕСС И ДИНАМИКА ПОРШНЕЙ  [c.75]

При работе поршневого двигателя в его кривошипно-шатунном механизме возникают усилия, определяющие условия работы отдельных деталей, а также самого двигателя в целом. Величина и характер изменения этих усилий могут быть определены при помощи уравнений кинематики и динамики кривошипно-шатунного механизма. Эти уравнения позволяют также определить точное положение поршня для любого угла поворота коленчатого вала, что очень важно для расчета рабочего процесса современных автомобильных и тракторных двигателей.  [c.4]


Для расчета давления и температуры рабочего тела в функции угла поворота коленчатого вала необходимо знать законы движения поршней или изменения объемов горячей и холодной полостей (см. раздел Кинематика и динамика двигателя ). Во многих случаях при анализе рабочего процесса принимают, что изменение объемов холодной и горячей полостей происходит по гармоническому (синусоидальному) закону.  [c.25]

Чтобы решить уравнение (1), необходимо знать характер изменения давления воздуха в обеих полостях рабочего цилиндра. В работе [4] приведена система уравнений, описывающих динамику пневматического привода, в том числе уравнение движения поршня и уравнения, характеризующие давления по обе его стороны, полученные в предположении квазистационарного протекания термодинамических процессов и отсутствия теплообмена между приводом и окружающей средой. Таким образом, задача сводится к решению системы из трех нелинейных дифференциальных уравнений, которую возможно решить только численными методами. В работах 4, 5] такое решение проведено посредством ЭВМ для процесса торможения при различных конструктивных параметрах пневмоприводов и разных режимах их работы.  [c.221]

На основании полученных данных оказалось возможным с целью значительного упрощения задачи принять давление р в рабочей полости в период гашения скорости постоянным и равным его установившемуся значению (р = р ). В действительности это давление несколько меняется, но влияние этого изменения на время процесса торможения оказывается несущественным. Установившиеся значения давления Ру, р у и скорости Ху соответствуют равномерному движению поршня под действием постоянных сил давления воздуха в обеих полостях до начала торможения. Такой режим движения характерен для сравнительно небольшого диапазона изменения конструктивных параметров, однако для большинства приводов характерно достижение установившейся скорости в конце хода. Поэтому начальную скорость торможения также можно принять равной установившемуся значению = = Ху). Оно может быть определено при совместном решении системы трех уравнений динамики пневмопривода при постоянных значениях давлений в обеих полостях. Установившаяся скорость  [c.221]

Динамика типового исполнительного пневматического устройства описывается системой из нескольких нелинейных дифференциальных уравнений, решение которых в конечном виде невозможно. С целью упрощения задачи исследователи задавались целым рядом допущений, а именно принимали постоянным давление в одной или обеих полостях рабочего цилиндра, рассматривали движение поршня как равномерное или равноускоренное, считали, что термодинамические процессы протекают при неизменной температуре, и т. д. Вследствие этого результаты расчета значительно отличались от экспериментальных данных и не могли быть распространены на широкий круг аналогичных устройств.  [c.5]


Протекание рабочих процессов дизелей обоих типов генераторов газа имеет некоторые особенности, связанные с динамикой поршней. В отличие от симметричной эпюры скоростей поршня двигателя с кривошипно-шатунным механизмом, прямой и обратный ходы поршня в СПГГ характеризуются различными скоростями. Как уже было отмечено выше, эти особенности движения свободного порщня несколько повышают относительный к. п. д. индикаторного процесса. Некоторое уменьшение скорости поршня в начале обратного хода улучшает газообмен в цилиндре двигателя. Повышенные скорости поршня в начале рабочего хода уменьшают теплоотдачу в воду на участках видимого сгорания и расширения индикаторной диаграммы. Подача большей части топлива до в. м. т. с помощью аккумулирующего устройства топливного насоса приводит к высоким скоростям сгорания и повышению экономичности дизеля.  [c.190]

Процесс продувки и заполнения цилиндра воздухом происходит за очень малый промежуток времени. Поэтому для создания условий наиболее полного удаления отработавших гаЗов и заполнения цилиндра свежим воздушным зарядом (продувка) продувочные 4 и выпускные 9 окна выполнены со специальным наклоном в горизонтальном (тангенциальном) и вертикальном направлениях. Через 236 ° поворота коленчатого вала нижний поршень закрывает полностью выпускные окна, тогда как продувочные еще открыты (положение г). Установившийся ранее поток обеспечивает дальнейшее пос- тупление (дозар яд) свежего воздуха в цилиндр до закрытия верхним поршнем продувочных окон. Воздушный вихрь, образованный при продувке, сохраняется и в момент впрыскивания топлива, что обеспечивает хорошее перемешивание воздуха с топливом и полное его сгорание. Полному смесеобразованию способствует и чечевицеобразная форма камеры сгорания поршней, приспособленная для периферийной подачи топлива. За 10 ° до в. м. т. нижнего поршня через форсунки 7 начинается впрыскивание топлива в камеру сгорания. Благодаря высокому давлению топлива в процессе впрыс191вания (свыше 20 МПа) и малому диаметру (0,56 мм) отверстий в наконечнике распылителя форсунки топливо распыливается на мелкие туманообразные частицы и смешивается с воздухом. К моменту впрыскивания воздух в камере сгорания имеет температуру, достаточную для самовоспламенения топлива. Постепенное его сгорание обеспечивает плавное повышение давления в цилиндре, что благоприятно сказывается на динамике шатунно-кривошипного механизма. Максимальное давление сгорания приходится в момент, когда поршни перешли в. м. т. и начинают двигаться к наружной мертвой точке. В это время давление газов от сгоревшего топлива передается на днища поршней и далее через шатуны к коленчатым валам (рабочий ход). Таким образом, за один оборот коленчатого вала происходит полный рабочий цикл. Диаграмма фаз газораспределения изображена на рис. 7.  [c.14]


Смотреть страницы где упоминается термин Рабочий процесс и динамика поршней : [c.75]   
Смотреть главы в:

Свободнопоршневые генераторы газа для газотурбинных установок  -> Рабочий процесс и динамика поршней



ПОИСК



Поршни

Процесс рабочий



© 2025 Mash-xxl.info Реклама на сайте