Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные особенности коррозионностойких сталей и сплавов

Многие сплавы подвергают испытаниям на межкристаллит-ную коррозию. Особенно часто определяют склонность к межкри-сталлитной коррозии коррозионностойких (нержавеющих) сталей аустенитного, аустенито-мартенситного и аустенито-ферритного классов. ГОСТ 6032—58 предусматривает методы таких испытаний проката, поковок, труб, проволоки, литья, сварных швов и сварных изделий, изготовленных из целого ряда сталей этих классов, а также двухслойных сталей и биметаллических труб с плакирующим или основным слоем из этих марок сталей.  [c.451]


В связи с этим к подшипниковым сталям предъявляется ряд специфических требований, основное из которых — наличие высокой твердости. Твердость колец и тел качения подшипников как правило должна находиться в пределах 59-60 НКСэ и выше. В ряде случаев для специфических условий применения, когда нагрузки на подшипники малы, допускается использование сталей и сплавов, имеющих твердость в пределах 45—50 НКСэ. Однако в подавляющем большинстве случаев требуется высокая твердость. Кроме того, подшипниковые материалы должны обладать высокими прочностными характеристиками, сопротивлением износу, удовлетворительными усталостными свойствами, вязкостью (сопротивлением хрупкому разрушению) и, что особенно важно, способностью выдерживать высокие контактные нагрузки. Для определенной группы подшипников необходимо, чтобы материалы могли противостоять воздействию повышенных температур и агрессивных сред (тепло- и коррозионностойкие подшипниковые материалы).  [c.771]

Автором разработаны конструкции метчиков и проведены экспериментальные исследования по установлению условий производительного нарезания ими резьбы в жаропрочной стали [97]. Основные конструктивные особенности этих метчиков были в дальнейшем использованы при разработке нормалей на метчики для нарезания резьбы в коррозионностойких и жаропрочных сталях и сплавах (табл. 103 и 104).  [c.291]

Коррозионностойкие стали. Наиболее подробно влияние различных факторов на склонность к питтинговой коррозии было изучено для сплавов железа, главным образом, нержавеющих сталей различных марок. Исследование влияния основных легирующих компонентов коррозионно-стойких сталей —хрома и никеля — показало, что увеличение содержания хрома способствует повышению стойкости сталей к питтинговой коррозии в большей степени, чем увеличение содержания в них никеля. Сплавы Fe—Сг, содержащие 30—35 % Сг и более [61, 87], устойчивы к питтинговой коррозии в нейтральных растворах, содержащих С1 . Особенно благоприятным оказывается введение 1—5 % Мо [50, 61] в нержавеющие стали (в частности, в наиболее распространенные), содержащие 18% Сг, 10—13% Ni. Легирование нержавеющих сталей азотом (0,15—1 %) повышает стойкость к питтинговой коррозии [61, 88—90]. В работе [89] было исследовано влияние различных легирующих и примесных элементов С, N, Р, S, N1, Si, Мп, Ti, Zr, Nb, AI, У, W, Со, Си, Sn, вводимых в сталь состава 17 Сг 16 Ni без Мо и содержащую 4 % Мо. на устойчивость их к питтинговой коррозии. На рис. 27 видно, что наиболее существенно смещение Ет в положительную сторону в сталях без Мо, происходит при легировании ее Мо, N, Си или Ti. В сталях, содержащих 4 /о Мо, дальнейшее повышение стойкости к питтииговой коррозии было получено при добавках N и Si. Ухудшение стойкости к питтинговой коррозии наблюдали при легировании сталей Мп, А1 или Nb.  [c.95]


В химической промышленнрсти для изготовления сосудов, работающих в агрессивных средах, из хромоникелевых и хромистых сталей, цветных металлов и их сплавов применяют автоматическую сварку под флюсом, автоматическую сварку по слою флюса полуоткрытой дугой (алюминиевый сплавы) и аргонодуговую сварку. Необходимость экономии дорогостоящих материалов заставляет расширять применение двухслойных листов, у Технология гибки, вальцовки, штамповки и механической обработки двухслойных сталей существенно не отличается от технологии обработки монолитных коррозионностойких сталей. Однако сварка двухслойных сталей имеет существенное отличие. Она должна выполняться так, чтобы не происходило одновременного плавления углеродистой стали И металла защитного слоя, из-за опасения понижения коррозионной стойкости и пластичности зоны шва. Поэтому особенностью сварки двухслойных сталей является необходимость использования не одинаковых технологических процессов и материалов для сварки основного и плакирующего слоев. Так, на рис. 20-36 показана форма разделки двухслойного проката Ст. 3 и Х18Н10Т под автоматическую сварку. Углеродистую часть шва / и 2 выполняют проволокой Св-08А под флюсом АН-348 за два прохода, облицовочный слой 3 также выполняют автоматом за один проход двумя проволоками ЭП-389 расщепленной дугой под флюсом АН-26. Использование автомата как для сварки основного, так и плакирующего слоя требует точной сборки и высокой культуры выполнения сварного соединения. Поэтому более часто при сварке двухслойной стали автомат используют только для основного слоя, а плакированный сваривают вручную.  [c.594]

Чистый алюминий мягок и непрочен. Легируют его в основном для повышения прочности. Для того чтобы можно было воспользоваться высокой коррозионной стойкостью чистого алюминия, высокопрочные сплавы покрывают слоем чистого алюминия или более коррозионностойкого сплава (например, сплава Мп—А1 с 1 % Мп), который более электроотрицателен в ряду напряжений, чем основной металл. Наружный слой называют плакирующим, а сам двухслойный металл — алькледом. Плакирующий металл катодно заш,ищает основу, выполняя функцию протекторного покрытия. Его действие аналогично действию цинкового покрытия на стали. Помимо катодной защиты от питтинга покрытие из менее благородного металла защищает также от межкри-сталлитной коррозии и коррозионного растрескивания под напряжением (КРН). Это особенно важно, когда основной высокопрочный сплав приобретает склонность к этим видам коррозии в процессе производства или при случайном нагреве до высокой температуры.  [c.342]

Коррозионностойкие металлы и сплавы в производстве бутилкаучука применяются в небольшом количестве, преимущественно в запорной или регулирующей арматуре, а также в некоторых приборах. Проблемы борьбы с коррозией здесь, в основном, решаются путем тщательного обезвоживания исходного и особенно возвратного хлористого метила, после чего становится возможным применение теплообменной и иной аппаратуры из углеродистой стали. Вальцевание труб в решетках кожухотрубных аппаратов обычно не обеспечивает неироницаемсти для паров хлористого метила и поэтому приходится применять сварные соединения. Во избежание подсоса воздуха сварные. соединения предпочитают вместо фланцевых и на трубопроводах.  [c.309]

Для защиты от коррозии стали и цинковых сплавов в атмосферных условиях медные покрытия небольшой толщины (10— 20 мкм) не пригодны, так как в порах покрытия разрушение основного металла ускоряется в результате действия гальванических элементов. Кроме того, медь легко окисляется на воздухе, особенно прн нагревании. При действии сернистого газа поверхность ее окрашивается в темный (от коричневого до черного) цвет. Под действием угольной кислоты или хлористых соединений, находящихся в атмосфере или в жидких средах, поверхность меди покрывается основными или хлористыми солями меди. Таким образом, медное покрытие без последующей обработки (оксидирования, сульфидировання и др.) и нанесения других более коррозионностойких покрытий непригодно даже и для декоративной обработки изделий.  [c.236]



Смотреть страницы где упоминается термин Основные особенности коррозионностойких сталей и сплавов : [c.73]   
Смотреть главы в:

Коррозионностойкие стали и сплавы  -> Основные особенности коррозионностойких сталей и сплавов



ПОИСК



Основные особенности

Сплавы Сталь

Сплавы коррозионностойкие

Сталь коррозионностойкая



© 2025 Mash-xxl.info Реклама на сайте