Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обзор различных методов решения уравнений теории упругости

Обзор различных методов решения уравнений теории упругости  [c.118]

В гл. IV рассматриваются приложения метода конечных элементов к нелинейным задачам теории упругости. Глава начинается с обзорного изложения теории конечных упругих деформаций. Затем выводятся нелинейные жесткостные соотношения для упругих тел и приводятся решения ряда задач, в том числе задач о конечных деформациях несжимаемых тел вращения, растяжении и раздувании упругих мембран, конечной плоской деформации несжимаемых упругих тел. В эту главу включен также обзор различных методов решения больших систем нелинейных уравнений.  [c.7]


Подобно этому и метод граничных интегральных уравнений (ГИУ), хотя и имеет свои истоки в классической теории упругости, лишь в последние годы стал играть значительную роль в механике твердого деформируемого тела. Решения задач теории упругости при помощи метода ГИУ были получены различными исследователями, использовавшими разные подходы (см., например, [1, 2]). Обзор значительной части литературы дан в работе [3].  [c.68]

Методом граничных интегральных уравнений решались различные динамические задачи. В частности, двумерные задачи динамической теории упругости рассматривались в работах [5—7, 117, 439, 568], трехмерные — в [373, 374, 439, 463, 464, 477, 546]. Задачи о колебаниях упругих тел и пластин, а также задачи на собственные значения изучались в работах (87, 441, 503, 531, 544 и др.]. Существует несколько под содов к решению нестационарных задач методом граничных -интегральных уравнений. Можно использовать шаговую по времени схему, когда решение ищется последовательно в различные моменты времени. При этом используются фундаментальные решения динамических дифференциальных уравнений, которые называются запаздывающими потенциалами. Такой подход к решению динамических задач теории упругости использован в работах [374, 484, 494—496, 556]. Другой подход заключается в применении преобразования Лапласа по времени. В этом случае интегральные уравнения записываются для функций ч пространстве преобразований Лапласа и они решаются при различных значениях параметра преобразования [373]. Затем выполняется численное обратное преобразование Лапласа [196, 440, 465, 466, 536]. В работах [517, 556] рассматривались оба эти подхода и сравнивалась их эффективность с точки зрения точности и затрат машинного времени. Более эффективным оказался метод, основанный на применении преобразования Лапласа. Этот метод применялся к решению динамических задач в работах [5—7, 117, 140, 373, 463, 464, 472, 518, 568]. Метод решения динамических задач с использованием функций Грина соответствующих статических задач разработан в [448]. Более полный обзор применения метода граничных интегральных уравнений и граничных элементов в динамических задачах сделан в работах [44, 442, 462].  [c.105]

Однако наряду с этим направлением развивались методы оптимального проектирования упругоидеальнопластических конструкций, базирующиеся на критерии приспособляемости. Эта задача может рассматриваться, с другой стороны, как часть общей проблемы оптимального проектирования, внимание к которой значительно возросло в последние годы [52, 94, 204]. Наличие ряда монографий, включающих соответствующие обзоры [49, 52, 74, 132, 213], делает излишним рассмотрение в данной статье используемых критериев оптимальности, соответствующих вычислительных методов и приложений. Отметим лишь, что математические методы расчета условий приспособляемости (представляющие собой различные формы методов оптимального управления, см. разд. 10) могут быть непосредственно использованы для оптимального проектирования. Однако их практическое применение осложняется следующими обстоятельствами, сдерживающими пока развитие проектировочных расчетов. В задачах прямого проектирования упругие напряжения от внешних воздействий, как правило, не могут быть вычислены заранее, поскольку неизвестны характеристики конструкции или внешних воздействий. Поэтому не удается отделить задачу оптимизации от рассмотрения состояний конструкции в различные моменты времени, как это было сделано в проверочном расчете (см. разд. 2). Оптимальное проектирование теплонапряженных конструкций, которц(е представляются наиболее интересной областью приложений теории приспособляемости, требует включения в систему ограничений задачи — дополнительно.— уравнений для описания нестационарного теплового состояния конструкции, что еще более усложняет формулировку задач и разработку методов и алгоритмов для их решения.  [c.44]



Смотреть страницы где упоминается термин Обзор различных методов решения уравнений теории упругости : [c.130]    [c.148]   
Смотреть главы в:

Теория упругости Основы линейной теории и ее применения  -> Обзор различных методов решения уравнений теории упругости



ПОИСК



К упругих решений

Метод решения уравнений

Метод теории решений

Метод упругих решений

Методы Уравнения упругости

Обзор

Решения метод

Теории Уравнения

Теория Метод сил

Теория упругости

Упругость Теория — см Теория упругости

Уравнение метода сил

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте