Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы сопротивления давления, сопротивления трения и сопротивления деформации

Как мы видели в гл. I, в покоящейся жидкости действуют и дают уравновешенную систему два рода сил силы тяжести (и другие массовые силы) и разности давлений. Эти же силы действуют и в движущейся жидкости, но здесь к ним присоединяется еще трение жидкости, которое следует рассматривать как сопротивление деформации. Трение жидкости подробно будет рассмотрено в следующей главе, в этой же главе мы будем им пренебрегать. Жидкости, наиболее важные для техники (вода, воздух и др.), обладают очень малой вязкостью, и поэтому во многих случаях сопротивление, возникающее в них вследствие трения, столь мало, что пренебрежение им вполне оправдано. Кроме того, такое пренебрежение трением является и необходимым, так как только в этом случае соотношения между силами получаются достаточно простыми для того, чтобы можно было вывести из них наглядные закономерности. Поэтому обычно принято основные законы движения жидкостей выводить на основе идеализированного представления о жидкости, лишенной трения, и только после этого учитывать, какие изменения вносит наличие трения в идеальное поведение жидкости. Мы также будем следовать этому пути, причем предположим, что рассматриваемая нами идеальная жидкость обладает также свойством несжимаемости, следовательно, никаких изменений объема при Кроме того, такое пренебрежение трением является и необходимым, так как только в этом случае соотношения между силами получаются достаточно простыми для того, чтобы можно было вывести из них наглядные закономерности. Поэтому обычно принято основные законы движения жидкостей выводить на основе идеализированного представления о жидкости, лишенной трения, и только после этого учитывать, какие изменения вносит наличие трения в идеальное поведение жидкости. Мы также будем следовать этому пути, причем предположим, что рассматриваемая нами идеальная жидкость обладает также свойством несжимаемости, следовательно, никаких изменений объема при движении не происходит.  [c.56]


Очевидно, что при механическом перенесении закона распределения удельных давлений при неподвижном катке на случай качения катка никак нельзя объяснить появление сопротивления при качении, так как силы трения при скольжении в процессе деформации при симметричном законе распределения давлений взаимно уравновешиваются.  [c.425]

Указанная зависимость может быть также оправдана на основании следующих рассуждений. При неподвижном катке (рис. 9.5, а), согласно теории Герца, контактные напряжения распределяются по закону эллипса, ось которого проходит через середину полоски контакта. При этом реакция R, определяемая суммированием по площади контакта удельных давлений, равна общей силе нормального давления N и направлена в обратную сторону. При качении цилиндра симметрия поля контактных напряжений нарушается в силу явлений гистерезиса напряжения в зоне нарастающих деформаций больше, чем в зоне уменьшающихся (рис. 9.5,6). Таким образом, линия действия общей составляющей реакции Я = Ы смещается за линию симметрии полоски контакта на величину к, которая и называется плечом трения качения (таково второе представление о сопротивлении при качении).  [c.314]

Та ое относительное движение приводит, в конечном итоге, к появлению сопротивления при скольжении малых площадок, определяемых деформацией материалов в зоне, смежной с теоретической точкой касания. Момент сил трения, появляющийся при верчении, можно определить так же, как и в случае плоской пяты, выяснив предварительно закон распределения удельных давлений на площадке касания.  [c.424]

В 1874 г. В. Л. Кирпичев [15] предложил и доказал теорему о подобии при упругих явлениях , в которой сформулировал закон подобия (впоследствие перенесенный и на деформации в пластической области). Н. Н. Давиденков [13], применяя анализ размерностей, дал подробное исследование закона подобия для статических и динамических испытаний материалов. Однако имеется много случаев, когда закон подобия оказывается несправедливым. Отклонения от подобия при обработке давлением изучались С. И. Губкиным [11], который показал, что с увеличением объема сопротивление деформированию и пластичность уменьшаются, особенно при высоких температурах из-за различных тепловых условий и влияния контактных сил трения. Наибольшие и наиболее частые отклонения от подобия наблюдаются при разрушении. Поскольку эти отклонения связаны с изменением размеров, они часто обозначаются как масштабный фактор.  [c.313]


О зависимости сопротивления от числа Рейвольдса. Как мы видели, сопротивление, обусловленное внутренним трением жидкости, может быть разложено на сопротивление деформации ), на сопротивление тре-ния на поверхности обтекаемого тела и на сопротивление давления, обусловливаемое возмущающим действием вязкости на спектр линий тока (отрывание пограничного слоя). В зависимости от величины числа Рейнольдса полное сопротивление состоит почти полностью или из сопротивления деформации или из сопротивления давления вместе с сопротивлением трения, причем и в последнем случае — в зависимости от формм и положения тела — преобладающее значение может иметь одно из обоих, сопротивлений. Поэтому можно сказать, что действие внутреннего трения жидкости на движущееся в ней тело, следовательно, и закон сопротивления, зависит в общем случае не только от формы и положения тела, но также от скорости и размеров тела и рода жидкости. Отсюда видно, насколько сложна проблема сопротивления и как почти безнадежна возможность ее решения в общем виде.  [c.110]

Гидравлическое управление тормозами, в котором для передачи энергии использовано свойство практической несжимаемости жидкости, отличается следующими положительными особенностями надежностью действия относительно высоким к. п. д. (вследствие малых потерь на трение), достигающим значений 0,9—0,94 и быстротой реакции исполнительного механизма на соответствующие движения органов управления (педалей или рычагов) удобством передачи энергии от педали или рычага управления к тормозу и конструктивной простотой такой передачи при помощи тонких трубок, изгибаемых в любом направлении и огибающих препятствия малыми упругими деформациями системы вследствие малого увеличения объема трубопровода при увеличении давления жидкости в процессе торможения, а также вследствие несжимаемости жидкости простотой синхронного включения двух или более тормозов от одной педали, что имеет большое значение для современных подъемно-транспортных машин (например, в механизмах передвижения подъемных кранов с раздельным приводом) простотой регулирования процесса торможения возможностью создания плавного торможения с нарастанием тормозного, юмента по желаемому закону постоянным демпфирующим влиянием сопротивления протеканию жидкости и упругости длинного трубопровода, предохраняющими элементы привода и механизма от перегрузок, даже при весьма резком нажатии на недаль компактностью механизма управления для подъемно-транспортных машин большой грузоподъемности от-182  [c.182]


Смотреть страницы где упоминается термин Законы сопротивления давления, сопротивления трения и сопротивления деформации : [c.110]   
Смотреть главы в:

Гидро- и аэромеханикаТом2 Движение жидкостей с трением и технические приложения  -> Законы сопротивления давления, сопротивления трения и сопротивления деформации



ПОИСК



Д давление деформация

Деформация при трении

Закон сопротивления

Сопротивление давления

Сопротивление давления н сопротивление трения

Сопротивление деформациям

Сопротивление трения

Трения законы



© 2025 Mash-xxl.info Реклама на сайте