Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Двумерные стационарные течения плоские и осесимметричные

Двумерные стационарные течения плоские и осесимметричные  [c.124]

Приведем уравнения двумерного стационарного течения к естественной системе координат, в которой в качестве координатных линий принимаются линии тока и нормали к ним. В этих переменных функция тока ф получает естественное истолкование (1ф представляет собой расход массы газа через прямоугольное поперечное сечение трубки тока, имеющей единичную ширину (единица длины в плоском случае и один радиан в осесимметричном) и ограниченной линиями ф и ф 6ф.  [c.125]


Задачу о стационарном сверхзвуковом течении также можно решать методами, развитыми для нестационарных волн. Действительно, между задачами из этих двух областей существует тесная аналогия. Двумерное стационарное течение соответствует нестационарным плоским волнам, осесимметричное стационарное течение — цилиндрическим волнам.  [c.197]

Решение двумерной стационарной задачи теплопроводности для плоских и осесимметричных течений.  [c.276]

Применим формулу (16.14) к случаю (плоских и осесимметричных) двумерных стационарных адиабатических течений. Векторное уравнение (16.14) имеет две компоненты  [c.127]

Итак, область возмущенного течения заключена между отошедшей ударной волной и поверхностью тела (рис. 23.1). В плоском и осесимметричном случаях течение описывается стационарными двумерными уравнениями, которые неоднократно выписывались ранее.  [c.171]

Приведем некоторые определения. Течения, параметры которых зависят от трех пространственных координат и времени, называют пространственными (трехмерными) нестационарными течениями. Если параметры течения не зависят от времени, то такие течения называют стационарными. В случае двух пространственных координат течения называют двумерными, а одной— одномерными. Частным случаем двумерных течений являются плоские, осесимметричные и конические течения. В первом случае параметры течения зависят лишь от двух декартовых координат X, у, во втором — от цилиндрических координат х, г в случае конических течений — от сферических координат ф, 0. Газ называют сжимаемым, если в потоке газа происходит заметное изменение плотности, и несжимаемым, если изменение плотности мало. Далее в основном рассматриваются двумерные плоские или осисимметричные стационарные либо одномерные нестационарные  [c.32]

Развит метод коррекции образующих двумерных ( плоских и квази-трехмерных ) профилей и осесимметричных тел с протоком (мотогондол), обтекаемых околозвуковым потоком идеального (невязкого и нетеплопроводного) газа. Местные сверхзвуковые зоны (м.с.з.), возникающие у их поверхности, обычно замыкаются скачками уплотнения. В м.с.з. у поверхности скорректированных тел скачков нет, т.е. они являются суперкритичес-кими . В основе метода лежит расчет установлением по времени транскритического (по давлению) обтекания исходных тел композитным газом (к.г.). При давлениях выше критического , отвечающего звуковой скорости потока, к.г. тождественен нормальному газу, в котором при стационарном течении возможно образование м.с.з. с замыкающими скачками. При давлениях ниже критического нормальный газ заменяется фиктивным . С падением давления в стационарном течении фиктивного газа скорость звука растет, причем быстрее скорости потока. Поэтому при стационарном течении к.г. при давлениях ниже критического не возникает м.с.з. и скачков. Данные на звуковой ( критической ) линии, получающейся при обтекании исходного тела к.г., используются для расчета методом характеристик течения нормального газа в закритической (для него - сверхзвуковой) зоне. Построенная методом характеристик линия тока, соединяющая без изломов звуковые точки исходной образующей, дает ее скорректированный участок, обтекаемый с безударной м.с.з.. Возможности метода демонстрируются примерами.  [c.250]


Другой подход к решению смешанной задачи сверхзвукового обтекания тел дан С. К. Годуновым, А. В. Забродиным и Г. П. Прокоповым (1961). В этом методе установления решение смешанной задачи о стационарном обтекании тела находится как предел гиперболической задачи неустановившегося обтекания этого тела. На двумерные плоские и осесимметричные течения обобш ается метод решения задач о нестационарных одномерных движениях газа с разрывами, предложенный ранее С. К. Годуновым (1959). В методе установления уравнения плоского или осесимметричного неустановившегося движения в дивергентной форме записываются в виде интегралов по поверхности в трехмерном пространстве координат и времени. Такая форма записи в виде законов сохранения обеспечивает возможность рассмотрения течений со скачками уплотнения и другими разрывами. Далее в этом пространстве с учетом формы обтекаемого тела выбирается сетка и интегралы записываются в виде соответствующих сумм подынтегральных выражений в узлах этой сетки. Система координат не предполагается фиксированной. Интегралы, записанные для отдельной ячейки сетки, используются затем для получения разностных уравнений в подвижной координатной системе, причем в течение каждого шага по времени значения газодинамических величин на каждой границе ячейки считаются неизменными. Эта система конечноразностных уравнений, полученная из интегральных законов сохранения, служит аппроксимирующей системой для точных дифференциальных уравнений.  [c.178]


Смотреть страницы где упоминается термин Двумерные стационарные течения плоские и осесимметричные : [c.697]    [c.258]   
Смотреть главы в:

Лекции по газовой динамике  -> Двумерные стационарные течения плоские и осесимметричные



ПОИСК



Плоские и осесимметричные течения

Течение двумерное

Течение осесимметричное

Течение плоское

Течение стационарное

Тор двумерный



© 2025 Mash-xxl.info Реклама на сайте