Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Действительный процесс истечение газа

Действительный процесс истечения газов и паров из каналов (сопл) происходит с трением. Часть располагаемой работы затра- чивается на преодоление трения. Работа трения переходит в теплоту в результате внутреннего тепловыделения газ или пар нагревается. Отметим, что в действительных адиабатных процессах, так же как и в идеальных, теплообмена с окружающей средой не происходит.  [c.113]

ДЕЙСТВИТЕЛЬНЫЙ ПРОЦЕСС ИСТЕЧЕНИЯ ГАЗА  [c.136]


Рис. 3,8. Изоэнтропийный н действительный процессы истечения газа 8 sh-диаграмме Рис. 3,8. Изоэнтропийный н действительный процессы истечения газа 8 sh-диаграмме
Часть кинетической энергии в результате трения превращается в теплоту, которая при отсутствии теплообмена повышает энтальпию и энтропию рабочего тела, вытекающего из сопла. Поэтому состояние газа или пара в конце действительного процесса истечения в диаграмме 8 изображается точкой, всегда расположенной правее точки, характеризующей конечное состояние рабочего тела в идеальном процессе истечения.  [c.214]

Реальные, действительные процессы истечения жидкостей, паров и газов сопровождаются трением потока о стенки канала, что связано с шероховатостью стенок канала, вязкостью среды и с другими факторами.  [c.109]

Действительный процесс истечения паров и газов  [c.115]

В отличие от теоретического изоэнтропийного действительный процесс истечения реального газа происходит при трении частиц газа между собой и о стенки канала. При этом работа, затрачиваемая на преодоление сил трения, преобразуется в теплоту, в результате чего температура и энтальпия газа в выходном сечении канала возрастают. Истечение газа с трением становится необратимым процессом и сопровождается увеличением энтропии.  [c.122]

Режим истечения газа действительно будет дозвуковым, сколь бы велик ИИ был подогрев в камере заданное полное давление газа, снижающееся в процессе подвода тепла, недостаточно для создания звуковой скорости истечения в атмосферу. Если бы полное давление было большим, например р = 2,4-10 Н/м , то из последней формулы следовало бы г(Хз) = 0,390 это значение меньше критического, так как 7-(1) = 0,429. Следовательно, при таком давлении режим истечения был бы критическим и Ха = 1,0.  [c.251]

Вследствие необратимых потерь в реальном процессе истечения при том же перепаде давлений ро—р2 действительный теплоперепад меньше располагаемого теплоперепада Д/1<Д/го. Часть кинетической энергии потока затрачивается на преодоление сил трения, переходит в теплоту, воспринимаемую газом или паром, что в итоге приводит к уменьшению действительной скорости истечения по сравнению с теоретической.  [c.109]


При одинаковом перепаде давления Ap = pi — p. температура газа в конце адиабатного процесса расширения при истечении с трением выше, чем в конце адиабатного расширения без трения следовательно, скорость истечения в действительном процессе меньше, чем в идеальном (w < гг)).  [c.113]

Это уравнение справедливо при любых значениях h и I2 однако оно не вскрывает условий возможности осуществления течения потока газа с расчетной скоростью. Действительно, в ряде случаев для организации течения газа со скоростью, вычисленной по уравнению (153), необходимо иметь канал определенной геометрической формы. В этом смысле одно уравнение (153) является недостаточным для исследования процессов истечения. Для практического использования термодинамического метода необходимы дополнительные сведения.  [c.119]

Формула (5. 18) весьма удобна при графических расчетах процесса истечения по специальным диаграммам (о которых рассказано ниже). Значение этой формулы состоит также в том, что она справедлива для любого газа, (идеального или реального). Действительно, при выводе уравнения энергии газового потока  [c.120]

При истечении газа из резервуара ограниченной емкости дав ление его в резервуаре уменьшается, а вследствие этого меняются все параметры газа и условия истечения. При быстром вытекании газа теоретически процесс должен совершаться адиабатно, но, учитывая в действительности некоторое нагревание  [c.93]

Коэффициент скорости. До сих пор истечение рассматривалось в предположении адиабатного расширения газа без трения его о стенки сопла. В действительных условиях процесс истечения всегда происходит с некоторыми потерями энергии газа на совершение неизбежной работы трения. Поэтому действительная скорость истечения Сд всегда меньше теоретической скорости сг, определяемой по формулам, приведенным в настоящей главе. Отношение  [c.89]

Истечение газа из резервуара, который имеет практически постоянные параметры сжатого воздуха, в общем случае является не-установившимся процессом. С целью значительного упрощения задачи истечение газа из резервуара можно рассматривать как частный случай установившегося движения потока газа. Установившимся движением газа называют такое движение газа, когда его скорость в каждой точке потока определяется только ее координатами и не зависит от времени. Это идеализированный процесс, так как в действительности скорость при движении газа зависит от перепада давлений, а величина давления зависит от времени наполнения газом объема полости или трубопровода, от инерционности столба газа, от количества поступающего газа, которое является функцией времени, и других факторов. Однако с целью упрощения расчетов в ряде случаев движение газа принимают установившимся, подчиняющимся уравнению Бернулли [33,42]  [c.29]

За косым скачком уплотнения процесс истечения можно считать приближенно изобарическим (в действительности происходит незначительное повторное сжатие струи). Зона отрыва потока от стенки смещается в направлении, противоположном течению газа, по мере увеличения давления Рп, при современном уровне знаний мы не можем определить точно, что происходит, когда точка отрыва достигает окрестности критического сечения. Именно поэтому предел давления Рн2 на фиг. 2.11 не указан.  [c.96]

Теоретически при идеальном (без учета диссипативных процессов) газодинамическом истечении в вакуум через отверстие или с помощью сопла можно разогнать поток до любых чисел Маха при любой сколь угодно малой плотности. Однако в действительности при получении потоков разреженного газа с помощью сопел быстрое нарастание пограничного слоя в расширяющейся части сопла препятствует реализации режима, рассчитанного по идеальной схеме. Чтобы избежать Этой трудности, в последние годы уделяется большое внимание изучению свободно расширяющейся струи ). В этом течении нет стенок сопла и, следовательно, нет и мешающего реализации режима пограничного слоя. Однако оказывается, что и в этом течении наличие диссипативных процессов не позволяет получить сколь угодно большие числа Маха.  [c.425]

Во время этих опытов возник ряд вопросов. Оказывала ли влияние быстрота истечения Действительно ли процесс был адиабатическим Можно ли применять здесь формулы, справедливые для идеальных газов Рентген исследовал даже упругое последействие металлической пластинки — манометра.  [c.39]


В действительном процессе истечения вследствие необратимости потерь на трение энтропия газа, как указывалось выше, возрастает и действительный процесс истечения отклоняется от изо-энтропы вправо (процесс 1—2д), Отклонение процесса вправо от точки 2 объясняется тем, что величина d -ip положительная, в связи с чем %n>S2. Поскольку расширение газа в сопле при истечении без трения и с трением происходит до одного и того же давления, то точка 2д будет лежать правее точки 2 на той же изобаре р-2 (12д > fj). Следовательно, действительная располагаемая работа /од = 1 — hn и действительная скорость газа на выходе нз сопла WJ = - - 2 (i — при истечении с трением всегда будут меньше, чем в случае обратимого течения без трения.  [c.115]

Если бы истечение было обратимым, без трения, то процесс изображался бы в г, -диаграммеотрезкомизоэнтропы 1= 2=соп81, заключеиныммеждуизобарами и (между точками 1 ш 2), а скорость на выходе из сопла w определялась бы значением разности энтальпий (ij—ц). Вследствие необратимых потерь при трении энтропия газа в процессе истечения возрастает и действительная адиабата отклоняется от изоэнтропы вправо (рис. 8-11, а). Далее, поскольку при истечении и без трения, и с трением расширение газа в потоке происходит, естественно, до одного и того же давления на выходе из сопла Р2, то очевидно, что точка, соответствующая действительному процессу истечения с трением,  [c.289]

Итак, при изменении давления среды от pi до рг = Ркр расход идеального газа через сопло увеличивается от нуля до максимума. При дальнейшем понижении давления среды от рг = Ркр до рз = О сог ласно уравнению (1.164) расход газа через сопло должен уменьшаться от максимума до нуля. Опыты с истечением упругих тел через суживаюишеся и цилиндрические насадки показывают, что при дальнейшем понижении давления среды от ркр до нуля расход газа через насадку становится постоянным, равным максимальному, т. е. действительный процесс изменения т от Р2/Р1 = 1 до pi/p = О идет по линии ah (рис. 1.28). Это расхождение теории с действительностью объясняется тем, что в ус1ье цилиндрического или суживающегося сопла при давлении среды Рср < Ркр устанавливается свое давление pi = ркр независимо от давления среды. Этому постоянному давлению потока на выходе из сопла, естественно, будет отвечать постоянный расход рабочего тела через сопло, равный максимальному значению Шпи,.  [c.47]

Процесс работы газа в активной ступени турбины представлен на рис. 94. Из камеры сгорания газ к соплам поступает с некоторым начальным теплосодержанием t o и характеризуется параметрами Ро и /о- В координатах i—s состояние газа перед соплами определяется точкой А. В соплах газ расширяется до давления р , потенциальная энергия преобразуется в кинетическую, теплосодержание понижается, скорость истечения растет. При адиабатном расширении этот процесс изобразится прямой АВ. В действительных условиях расншрение газа в соплах сопровождается  [c.213]

А. А. Авдеева пришла к заключению. что достаточно углубить место ввода газовых струй на расстояние L = 0,64 D от выходного сечения амбразуры диаметром D для того, чтобы эффективность смешения перестала зависеть от соотношения динамических напоров потоков газа и воздуха. Этот вывод нуждается в более подробном обсуждении. Действительно, поля перемешивания в выходном сечении смесительной амбразуры имеют ровный характер во всем исследованном диапазоне скорости истечения газа из щелевой прорези центрального газового сопла (стр. 90). Создается впечатление, что процесс протекает в данном случае одинаково хорошо при различных значениях дальнобойности газовых струй, зависящей от ширины газовыпускной щели б и скорости истечения газа Wr. Однако поскольку расход газа п коэффициент избытка воздуха в опытах оставались ностояннымн, а величина Wr увеличивалась пропорционально уменьшению б, то согласно уравнению (10-6)  [c.191]

Критическое давление при истечении. Из формулы (12-13) видно, что расход газа т зависит от отношения Ра/Рх- Если принять, что р1 = р , т. е. Рг1Р = 1, то по формуле (12-13), как и следовало ожидать, расход газа будет равен нулю. Действительно, при р = нет перепада давлений, и процесс истечения невозможен.  [c.130]

Истечение газа, т. е. такого вещества, которое способно изменять свой объе.м, обладает особым свойством, которое обнаруживается при исследовании формулы (3-25). Эта формула показывает, что количество вытекающего в секунду газа зависит ог отношения р21ри т. е. (при данном рх) от давления рг- Если давление в пространстве, куда вытекает таз, равно давлению в сосуде, т. е. если р2=р, то истечения не должно -быть. И действительно, при рг/р 1=1 раскол газа по формуле (3-25) равен нулю. Но если в формулу (3-25) вместо рг подставить нуль, т. е. предположить, что истечение происходит в среду, где имеется полный вакуум, то тоже получим, что С = 0. Этот на первый взгляд странный результат объясняет формула расхода пара (3-24), из которой видно влияние удельного объема, также зависящего от Р2- Из нее можно заключить, что при постоянном / секундный расход зависит от скорости с и от удельного объема газа V2- Скорость с с уменьшением давления увеличивается, удельный объем ь<2 также увеличивается. В адиабатном процессе истечения вначале скорость с с уменьшением давления растет быстрее, чем объем 2, и поэтому О вначале с уменьшением рг растет. Однако это происходит не на всем диапазоне изменения рз-Достигнув некоторого максимального значения, О начинает уменьшаться это происходит потому, что при дальнейшем уменьшении р2 скорость истечения растет медленнее, чем удельный объем V2. При рг=0 скорость с будет иметь конечное значение, а иг— с ,так что О—>0. Это видно и из формулы (3-25) если в нее последовательно подставлять  [c.141]

Рг/Р1 = 1, то по фop yлe (12.13), как и следовало ожидать, расход газа будет равен нулю. Действительно, при р1 = Рг нет перепада давлений, и процесс истечения невозлюжен.  [c.143]

Коэффициент скорости. До сих пор истечение рассматривалось Е предположении адиабатного расширения газа без трения его о стенки сопла. В -еиствнтелькых условиях процесс истечения всегда происходит с некоторы ли потерями энергии газа на совершение неизбежной работы трения. Поэтому действительная скорость истечения всегда меньше теоретической скорости с , определяемой по формулам", приведенным в настоящей главе. Отношение - = ср называют ко ф-фициентом скорости, который всегда меньше единицы. По данным опытов, в зaви и ю ти от плавности переходов сечений и качества обработки внутренней поверхности сопла коэффициент ф = 0,93—0,98. В среднем можно принимать ф = 0,95.  [c.147]


Рассмотрим некоторые частные случаи, когда значении получаются постоянными. При этом соотношение между i[- и п равно выражению (1.35). Пусть происходит истечение сжатого воздуха dW , = 0 dW + 0) из полости постоянного объема (dL = 0) при отсутствии теплообмена с окружающей средой dQ = 0). Тогда из формулы (1.43) получим я[) = О, а из выражения (1.35) п — к. Следовательно, в этом случае имеет место адиабатический процесс, который сохраняется и при переменном объеме dL =h 0). В случае наполнения (dW Ф 0 dW = 0) постоянного объема (L = 0) при отсутствии теплообмена с окружающей средой (dQ = 0) из формулы (1.43) получим ij =р= 0. Следовательно, адиабатический процесс может иметь место только при = uk или = k T (Т = Г), т. е. когда температура газа в магистрали Т , откуда он поступает в полость, в каждый данный момент равна температуре газа в полости Т. Но в действительности температура газа в магистрали постоянна, а в наполняемой полости она все время повышается. Отсюда можно сделать следующий вывод при обычных условиях адиабатический процесс в наполняемой из магистрали полости невозможно осуществить. Для его получения (т. е. для изменения состояния газа в полости по закону ри = onst) необходимо дополнительно подвести к ней тепло.  [c.29]


Смотреть страницы где упоминается термин Действительный процесс истечение газа : [c.315]    [c.209]    [c.84]    [c.134]    [c.145]    [c.32]    [c.215]   
Смотреть главы в:

Основы технической термодинамики  -> Действительный процесс истечение газа



ПОИСК



Действительный процесс истечения

Истечение

Истечение газа

Истечение газов



© 2025 Mash-xxl.info Реклама на сайте