Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические характеристики конструкционных материалов и оценка прочности

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ И ОЦЕНКА ПРОЧНОСТИ ДЕТАЛЕЙ  [c.23]

Как известно, водород широко применяется во многих отраслях техники и промышленности. Вместе с тем, обусловленное водородом повреждение металлов считается в настоящее время причиной многих аварий и катастроф, приносящих значительный ущерб. Среди разнообразных проявлений вредного влияния водорода на механические свойства (предел прочности, пластичность, характеристики усталости, ползучести и т. п.) особого внимания заслуживает обусловленное водородом облегчение зарождения и роста трещин в металлах. Связано это с тем, что независимо от того, насколько совершенны технология и качество изготовления, практически все конструкционные материалы и изделия из них содержат дефекты (или врожденные, или возникшие в процессе эксплуатации). При этом водород, воздействующий на металлы, значительно увеличивает их чувствительность к трещинам и увеличивает вероятность разрушения конструкций, обладающих при обычных условиях достаточной несущей способностью. Таким образом, эксплуатация металлов в атмосфере водорода приводит к необходимости оценки их трещиностойкости, а исследование закономерностей роста трещин в таких условиях приобретает большое значение.  [c.325]


Оценка механических свойств материалов в металловедении при разработке новых сплавов или новых режимов термической обработки имеет некоторые характерные особенности. Ввиду большого количества изучаемых материалов и режимов возникают требования к простоте измерения и стремление к малому числу определяемых механических характеристик. Вместе с тем оценка материалов должна быть комплексной, т. е. включать в себя одновременно конструкционную и технологическую оценку материалов по характеристикам прочности, пластичности и сопротивлению разрушению.  [c.322]

Конструкционные материалы для оценки их прочности и жесткости подвергаются механическим испытаниям. По характеру воздействия на материал методы испытаний разделяются на прямые (разрушающие и методы, основанные на непосредственном измерении перемещений и деформаций, т. е. методы механических испытаний) и косвенные (неразрушающие методы). У неразрушающих методов испытаний выделяются три направления контроль физико-механических характеристик, дефектоскопия элементов конструкций и измерение напряжений. Косвенные неразрушающие методы исключительно важны, однако они должны быть обоснованы и проверены при помощи прямых методов. С помощью прямых методов испытаний получают сведения о свойствах конструкционных материалов, необходимых при проектировании разных конструкций.  [c.189]

Для оценки влияния поверхности раздела на механические свойства рассмотрены результаты аналитических и экспериментальных исследований композитов с металлической матрицей. Для конструкционных композитных материалов наиболее важными являются следующие свойства модуль упругости, пределы текучести и прочности, характеристики микродеформации, ползучести и усталости. Поверхность раздела наиболее полно определяют структура, стабильность и прочность связи. Для оценки прочности связи и эффективности передачи нагрузки полезно простое правило смеси при этом необходимо, однако, учитывать все допущения и ограничения такого подхода.  [c.263]

Всем этим проблемам посвящены работы Я. Б. Фридмана, которые позволяют по-своему подходить к оценке материалов, разделяя механические характеристики по кинетическим признакам на до- и закритические. С этим также связан большой вклад Я. Б. Фридмана в разработку методов оценки конструкционной прочности материалов и способов, повышающих эту прочность [64].  [c.4]


Композиция алюминий — бериллий рассмотрена Тоем 135]. Композицию изготовляли путем диффузионного соединения при горячем прессовании бериллиевой проволоки с алюминиевой фольгой. Были получены хорошие механические свойства (удельный модуль упругости и удельная прочность) при использовании проволоки с прочностью 1,25 ГН/м (125 кгс/мм ). Проводили оценку сопротивления усталости и жаропрочности, которые также зависели от характеристик упрочняющих волокон. Однако вследствие исключительно высокой стоимости тонкой бериллиевой проволоки, обеспечивающей высокую прочность, использование этой композиционной системы для важных конструкционных материалов ограничено.  [c.45]

Задача определения длительной малоцикловой и неизотермической прочности деталей машин и конструкций включает получение данных о термомеханической нагруженности в эксплуатационных условиях, определение полей деформаций и напряжений рассчитываемых на прочность элементов (в первую очередь в зонах максимальной напряженности), использование обоснованных критериев длительной малоцикловой и иеизотермической прочности, определение механических свойств и расчетных характеристик конструкционных материалов применительно к условиям службы элементов. Этапы оценки длительной малоцикловой и неизотермической прочности представлены на рис. 4.1.  [c.174]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Для оценки прочности материалов используется целый комплекс механических характеристик. При выборе стали и других конструкционных материалов должны также учитываться их технологические свойства литейные качества, свариваемость, обрабатываемость резанием, возможность применения ковки и горячей штамповки, возможность применения термического и химико-термического упрочнения поверхности детали (закалки, цементацип, азотирования и пр.), притираемость. При оценке эксплуатационно-физических характеристик учитываются следующие свойства материалов коррозионная стойкость, износостойкость, кавитационно-эрозионная стойкость, отсутствие схватываемости (холодной сваркп) и задиров между сопрягаемыми поверхностями в рабочей среде, а в некоторых случаях учитывается присутствие (или отсутствие) легирующих элементов или компонентов сплава с интенсивной степенью радиоактивности и большим временем полураспада изотопов.  [c.21]


Накопленные значительные объемы данных о свойствах конструкционных сплавов в условиях характерных типов дагружения — статического, длительного, циклического — мо-т ут использоваться при оценке прочности материалов в соответ- г вующих типовых условиях нагружения. Однако многообразие 0 сложность программ нагружения, реализуемых в машинах и аппаратах, вместе с многообразием и сложностью обнаруживаемых при этом свойств материалов делают нецелесообразным дальнейшее выделение частных программ нагружения в целях 0Х эмпирического исследования. Для математического моделирования необходимы систематические экспериментальные исследования наиболее обш их закономерностей деформирования я разрушения материалов и формирования на этой базе определенных феноменологических концепций. Поэтому части Б справочника, содержаш ей данные о механических характеристиках сталей и сплавов, предпослана часть А, в которой делается попытка обобщения имеюш ихся сведений о деформировании и разрушении материалов при разных условиях нагружения, обосновывается выбор соответствуюш их моделей и дается их краткое описание, необходимое для рационального использования данных, помещенных в части Б.  [c.11]

Для правомерного определенияна материалах средней и низкой прочности требуются образцы большой толщины. Так для сталей с ffg = 400—700 МПа для обеспечения условий плоской деформации приг комнатной температуре необходимо проводить испытания на образцах толщиной 250 мм, высотой 610 мм, шириной 635 клм для титановых сплавов средней прочности в США используют листовые образцы длиной 400 мм, шириной 120 мм, и толщиной до 80 мм. Это приводит к большому расходу металла и затрудняет испытания из-за необходимости использования машины с большими предельными нагрузками. Не всегда имеются в наличии полуфабрикаты необходимой толщины для определения и, самое главное, механические свойства, определенные на одинаковых стандартных образцах с диаметром 10 мм, но взятых в разных ly e Tax заготовки, существенно различаются, особенно по пределу текучести (это обстоятельство приводит к необходимости регламентировать правила отбора проб из крупных заготовок для того, чтобы можно было надежно сопоставлять результаты испытаний этих образцов на растяжение). Тождественность комплекса механических свойств в крупном и мелком сечении иногда невозможно получить из-за ограниченной прокаливаемости сечения, необходимого Для выполнения критериев правомерности определения Ку , Кроме того, испытания по определению для конструкционных сталей, алюминиевых, титановых и других сплавов низкой и средней прочности и повышенной пластичности должны проводиться при таких температурах и тоЛ-щинах образцов, которые не отражают реальные условия конструирования и эксплуатации. Таким образом, признается необходимость "полунатурных" испытаний, что затрудняет использование этой важной характеристики для широкого практического применения при оценке сопротивления хрупкому разрушению таких важных конструкционных материалов, как низко- и среднеуглеродистые стали.  [c.35]

В настоящее время методы механических испытаний образцов и натурные испытания развиваются параллельно. Развитие методов механических испытаний образцов идет по нескольким направлениям значительно ббльшее внимание уделяется вопросам оценки конструкционной прочности материалов, путем испытания простых по форме образцов в условиях, приближающихся к эксплуатационным с учетом фактора времени, запаса упругой энергии, плоского напряженного состояния, влияния сред и др. особенно сильно развивается направление оценки материалов по характеристикам разрушения, сюда входят методы испытания, оценивающие сопротивление зарождению трещин, и методы, оценивающие способность материалов тормозить начавшееся разрушение [11]. Цель этих методов — приближенно оценить лабораторными испытаниями конструкционную прочность, а также надежность материалов в эксплуатации  [c.323]


Смотреть страницы где упоминается термин Механические характеристики конструкционных материалов и оценка прочности : [c.3]    [c.18]   
Смотреть главы в:

Расчет на прочность деталей машин Издание 3  -> Механические характеристики конструкционных материалов и оценка прочности



ПОИСК



493, 494 — Прочность механическая — Характеристики

Конструкционная прочность

Конструкционная прочность материалов

Материал конструкционный

Материал характеристики механические

Материалы Прочность

Материалы — Характеристики

Механическая характеристика

Механические характеристики конструкционных материалов

Оценка материалов

Оценка прочности

Оценки Характеристики

Прочность материалов, характеристики



© 2025 Mash-xxl.info Реклама на сайте