Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модели строения растворов

Модели строения растворов  [c.89]

Рис. 41, Модели строения растворов [1] Рис. 41, <a href="/info/762995">Модели строения</a> растворов [1]

Рис. 174. Модель строения твердого раствора меди в алюминии с зоной ГП (по Герольду) Рис. 174. <a href="/info/762995">Модель строения</a> <a href="/info/1703">твердого раствора</a> меди в алюминии с зоной ГП (по Герольду)
Структуру основного материала чаще всего исследуют на специально приготовленных из растворов образцах — пленках, в которых характер надмолекулярных структур зависит не только от природы полимера, но и от других факторов (вида растворителя, концентрации исходного раствора, условий кристаллизации). Надмолекулярные структуры в этих образцах образуются не в объеме, а в двумерном пространстве, что не воспроизводит реальной модели строения полимера. Поэтому этот метод, по всей видимости, не может быть использован для исследований структур сварного соединения полимеров.  [c.83]

Составляющие выделяются по результатам изучения системы различными физико-химическими методами и обоснованием их Индивидуальности служит лишь модель микроскопического строения отдельных фаз. Так, в разреженных газах составляющими считаются молекулы и атомы, а при высоких температурах также. электроны и ионы. В твердых и жидких органических веществах структурными единицами являются обычно молекулы, а, например, у галогенидов щелочных металлов — положительные и отрицательные ионы соответствующих элементов. Металлические расплавы и растворы по одним моделям считают состоящими из атомов, а по другим — из положительных ионов и электронов.  [c.16]

Рис. 3. Модель пограничного слоя металл-раствор при возникновении скачка потенциала (а) и схема строения двойного электрического слоя (б). Рис. 3. Модель <a href="/info/510">пограничного слоя</a> металл-раствор при возникновении <a href="/info/208923">скачка потенциала</a> (а) и схема <a href="/info/208869">строения двойного</a> электрического слоя (б).
Сплавы в твердом состоянии — это растворы легирующих элементов и примесей в металле-основе, смеси твердых растворов с упрочняющими фазами (гетерогенные структуры), а также эвтектические (или эвтектоидные) смеси. В жидком состоянии частично сохраняется относительное расположение атомов, характерное для твердого тела при нагреве выще температуры плавления нарушается дальний порядок в расположении атомов (т. е. упорядоченное расположение атомов во всем объеме тфисталла), но сохраняется ближний порядою), когда упорядоченность расположения атомов наблюдается лишь в областях с размерами в несколько межатомных расстояний. Так, при плавлении ЩК металлов (А1, N1, Со, Си) их координационное число уменьшается с К = 12 до К = 8—10, т. е. каждый атом теряет несколько соседей. В современных моделях строения жидких металлов в той или иной степени развиваются представления о квазикристаллической структуре жидкости. Экспериментально установлено, что в расплаве железа (при его перегреве на 30—40 °С) сохраняются микрообласти с ОЦК и ГЦК решетками, а в расплаве чугуна — с ГЦК и ромбической (РезС) решетками.  [c.302]


Описание структурной модели. Результаты представленных в 2.1 экспериментальных исследований, а также приведенные в п. 2.2.1 представления о неравновесных границах зерен являются базисом для разработки структурной модели наноструктурных материалов, полученных ИПД [12, 150, 207]. Предметом этой модели является описание дефектной структуры (типов дефектов, их плотности, распределения) атомно-кристаллического строения наноструктурных материалов, а задачей — объяснение необычных структурных особенностей, наблюдаемых экспериментально высоких внутренних напряжений, искажений и дилатаций кристаллической решетки, разупорядочения наноструктурных интерме-таллидов, образования пересыщенных твердых растворов в сплавах, большой запасенной энергии и других. На этой основе становится возможным объяснение, а также предсказание уникальных свойств наноструктурных материалов (гл. 4 и 5). Вместе с тем, как было показано выше, типичные наноструктуры в сплавах, подвергнутых ИПД, весьма сложны. Более простым является пример чистых металлов, где основным элементом наноструктуры выступают неравновесные границы зерен. Структурная модель металлов, подвергнутых ИПД, может быть представлена следующим образом.  [c.99]

Электронное строение, т. е. концентрация валентных электронов (электронов проводимости), и характер связи электронов с ионами металла являются основой третьей классификации металлических твердых растворов. Однако во многих случаях нельзя сделать четкого различия между электронами проводимости и электронами, принадлежащими только одному атому, в особенности у металлов-переходных групп. В связи с этим однозначная классификация металлов и сплавов по их электронному строению невозможна. Тем не менее понятие об электронах проводимости должно быть сохранено, так как существуют системы, которые не отклоняются сколько-нибудь значительно от идеализированных моделей, предполагающих наличие свободных электронов. Этот вопрос изложен в книгах Делингера [63], Мотта и Джонса [260] и Зейтца [338, 339]. Значение числа валентных электронов становится особенно очевидным из исследований [17, 18, 19, 132, 419], хотя стехиомет-рические составы промежуточных фаз часто имеют отклонения от обычных правил неорганической химии. Сложность вопроса можно иллюстрировать следующими примерами.  [c.9]

Обязательным следствием селективного растворения является формирование в поверхностном слое сплава химически измененной зоны с ярко выраженной неравновесностью по отношению к объему. Можно, по-видимому, полагать, что появление обогащенного (обедненного) по какому-либо компоненту поверхностного слоя есть общая закономерность, присущая всем многокомпонентным интерметаллическим системам при их взаимодействии с раствором электролита. В то же время термодинамические и кинетические аспекты такого взаимодействия изучены недостаточно глубоко. Это находит свое отражение в jMHoroo6pa3Hn развитых к настоящему времени модельных представлений, относящихся, по сути, лишь к разным сторонам единого механизма селективного растворения. В частности, наиболее распространенный подход опирается на континуальную модель, в которой атомно-кристаллическая картина строения сплава заменяется одномерным концентрационным профилем.  [c.193]

Смачивание поверхности металла ингибиторами в действительности является функцией двух факторов 1) силы упомянутой выше связи и 2) ориентации длинных углеводородных частей молекулы. По-виднмому, эта часть молекулы может ориентироваться любым образом — от параллельного, когда углеводородные цепи лежат на поверхности, до перпендикулярного к ней расположения. Степень покрытия является, очевидно, прямой функцией этой ориентации и влияет на эффективность защитной пленки. Натан [114, 115] показывает, что разветвление алкильной цепи уменьшает эффективность ингибитора, так как оно затрудняет адсорбцию из раствора. Он утверждает, что геометрическое строение неполярного радикала должно быть таким, чтобы могло осуществляться тесное смыкание углеводородных цепей. Модели молекул показывают, что такое смыкание углеводородных цепей возможно, но не происходит при разветвленных цепях, что также доказано Бигелоу с сотрудниками [116]. Ара маки и Фудзии [117, 118] нашли, что присутствие разветвленных углеводородных цепей вблизи функционального радикала уменьшает ингибирующее действие, препятствует правильной ориентации молекул ингибиторов и снижает силу адгезии функциональной группы к поверхности.  [c.213]


Основная форма существования урана в высшем валентном состоянии 6н--это уранил, являющийся монолитным катионом иОа т. В общем случае ион уранила представляет собой линейную и симметричную группу О—и—О. Для кристаллических веществ эти свойства уранильной группировки часто следуют из пространственной группы. В тех случаях, когда симметрия иО + не определяется пространственной группой, выводы о строении уранила менее достоверны, но надежных указаний на отклонение от линейной симметрии очень мало [1]. В растворах уранильная группировка может быть слегка изогнутой. Об этом свидетельствуют результаты спектроскопических исследований, в которых встречаются частоты, запрещенные для линейной модели.  [c.53]

В общем случае уклонения от идеальности являются следствием изменений энергетического спектра валентных д, - -я) электронов, спектра тепловых колебаний атомов и спинового состояния системы при образовании сплава из чистых компонентов, а также возникающих при этом упругих напряжений из-за размерного неосоответствия атомов исходных металлов. К сожалению, сейчас еще невозможно провести количественный расчет каждого из этих вкладов и тем самым решить задачу теоретического определения термодинамических параметро в сплава, прежде всего А2 и АН. Попытки распространить на сплавы переходных металлов некоторые модели, развитые для молекулярных растворов [1], физически мало оправданы, поскольку в них не учитываются глубокие изменения электронного строения при сплавообразовании. Полученные при этом выражения имеют характер интерполяционных (или экстраполяционных) формул [2]. Если в сплавах непереходных металлов энергия межатомного взаимодействия компонентов в значительной мере определяется перераспределением коллективизированных электронов в соответствии с разностью электроотрицательности компонентов [3], то для переходных металлов решающую роль играет наличие незаполненных -электронных уровней и их достройка в процессе сплавообразования, сопровождающаяся изменением энергии Ферми и плотности электронных состояний вблизи уровня Ферми. Изменения электронной структуры в результате заполнения -уровня переходного металла за счет в- или р-электронов второго компонента (т. е. донорно-акцепторного взаимодействия) отражаются па термодинамических свойствах, определяя значительные теплоты сплавообразования и отрицательные уклонения термодинамической активности компонентов от закона Рауля. Классическим примером являются сплавы Р(3 с Ад, Си и Аи [4] (рис. 1), для которых экстремальные значения АН наблюдаются при полном заполнении 4й-электронного уровня вблизи 40 ат. % Р(1, вблизи этого состава наблюдается также максимальное относительное изменение энергии Ферми системы [5].  [c.151]


Смотреть страницы где упоминается термин Модели строения растворов : [c.193]    [c.368]    [c.344]    [c.10]   
Смотреть главы в:

Молекулярные спектроскопия жидкостей  -> Модели строения растворов



ПОИСК



28—31 — Строение

Модель строения ЗМС



© 2025 Mash-xxl.info Реклама на сайте