Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хаотические движения детерминированных динамических систем

Далеко не все воспринимают теорию колебаний как науку переднего края. Ее огромные успехи и влияние на формирование принципа суперпозиции, спектрального подхода и линейно теории, открытие и изучение автоколебаний, а сейчас — стохастических колебаний нередко обезличиваются , утрачивают непосредственную связь с теорией колебаний, быстро становясь общим достоянием. Наша книга — прежде всего о последних достижениях теории колебаний, меняющих наши фундаментальные естественно-научные представления, об открытии и исследовании хаотических движений детерминированных автономных динамических систем, о возможности генерации такими системами стохастических колебаний, о новом, более широком взгляде на возможные движения динамической системы, о наличии двух противоположных тенденций в эволюционировании динамической системы — стремлении к порядку и стремлении к хаосу.  [c.43]


Вернемся опять к полной модели Лоренца (359). У нее имеется три стационарных рещения при г > 1, и только два из них (360) устойчивы при небольшой надкритичности. Но что произойдет, если увеличивать параметр г, не ограничиваясь небольшими его значениями Первый вопрос — устойчиво ли равновесие (360) — можно опять рассмотреть с помощью линейного приближения вблизи равновесия. Соответствующий анализ показывает, что существует второе критическое значение га, выше которого происходит вторая бифуркация. Но это еще не все. Оказывается, система уравнений (359) имеет много различных мод движения. Самая удивительная из них была обнаружена самим Лоренцем при значениях параметров г = 28, <т = 10, ==8/3. Это решение получило название "странный аттрактор". Лоренц обнаружил, что система X, К, Z) совершает сложное хаотическое движение, похожее на "танец" вокруг двух неустойчивых фокусов. Стартуя с любой точки с небольшими X, , Z, система переходит на неустойчивый фокус, вокруг которого она начинает описывать витки с амплитудой, возрастающей со временем, т.е. пробегает траекторию по раскручивающейся спирали. После некоторого количества таких витков система внезапно устремляется ко второму фокусу, вокруг которого она снова описывает витки по раскручивающейся спирали. После нескольких витков, система снова перепрыгивает на первую спираль, чтобы приблизительно повторить то же самое движение. Однако никакой периодичности в таком движении нет и времена, в течение которых система находится вблизи одного из фокусов, и число витков на каждой из спиралей кажутся совершенно случайными. Хаотическое движение появляется в совершенно детерминированной динамической системе с тремя координатами X, V, Z.  [c.322]

Система Лоренца. Возникает вопрос возможно ли хаотическое поведение реальных динамических систем в ограниченной области фазового пространства В системах с одной степенью свободы хаотическое движение невозможно. Действительно, стохастичность возникает при перепутывании и расходимости траекторий. Однако, в силу того что фазовые траектории не пересекаются, единственно возможными аттракторами в ограниченной области являются предельные циклы и неподвижные точки. Ситуация меняется в случае трехмерного фазового пространства (система с 1, 5 степенями свободы). До недавнего времени никто, например, не сомневался в том, что в принципе можно достичь точного прогноза погоды, обработав достаточное количество информации. От этого подхода пришлось отказаться благодаря поразительному открытию детерминированные системы с малым числом степеней свободы ведут себя хаотически, причем случайное поведение имеет принципиальный характер — от него нельзя избавиться, собирая больше информации. Здесь случайный процесс определяется вероятностью того, что динамическая переменная может принять любое значение из некоторой области фазового пространства.  [c.179]


Предпосылки возникновения хаоса. Изученные выше интегрируемые случаи движения нескольких точечных вихрей представляют собой исключение в общем неинтегрируемом случае нелинейной системы обыкновенных дифференциальных уравнений (3.2). Неинтегри-руемость любых уравнений является обычным делом и до недавнего времени казалось, что разработанные многочисленные эффективные вычислительные алгоритмы — методы Рунге — Кутта, Адамса — Бошфорта и другие — полностью обеспечивают я ализ поведения динамической системы на любом промежутке времени. Однако, начиная с работы Э.Лоренца [170], в научное сознание глубоко вошла идея о возможности хаотического поведения в детерминированных нелинейных систем ах даже с малым числом степеней свободы. В работе исследовалась общая задача термоконвекции применительно к образованию крупномасштабных вихревых структур. Используя уравнения Навье — Стокса, записанные в так называемом приближении Буссинеска [103] , и раскладывая их по стандартной процедуре метода Бубнова — Галеркина, Э.Лоренц получил свою знаменитую систему трех обыкновенных нелинейных уравнений. При определенных значениях параметров, отражающих физические характеристики исходной задачи, найдены необычные, хаотические свойства ее решений, названные странным аттрактором .  [c.157]

Если бы кто-то сказал, что через триста лет после публикации Prin ipia Ньютона в динамике будут сделаны новые открытия, его бы посчитали наивным или неумным. Тем не менее в последние десять лет во всех областях нелинейной динамики были обнаружены новые явления, главное из которых — хаотические колебания. Хаотические колебания — это возникновение неупорядоченных движений в совершенно детерминированных системах. Такие движения и раньше обнаруживались в механике жидкостей, ио недавно их заметили в несложных механических и электрических системах и даже в простых задачах с одной степенью свободы. Вместе с этими открытиями пришло понимание того, что нелинейные разностные и дифференциальные уравнения могут иметь офаниченные непериодические решения, которые ведут себя случайным образом, хотя в этих уравнениях нет случайных параметров. Это способствовало развитию новых математических идей, новых подходов к динамическим решениям, проникающих сейчас в лаборатории.  [c.6]


Смотреть главы в:

Стохастические и хаотические колебания  -> Хаотические движения детерминированных динамических систем



ПОИСК



Движение динамической системы

Движение системы

Система детерминированная

Системы динамические

Хаотическое движение



© 2025 Mash-xxl.info Реклама на сайте