Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Составные стержни переменного сечения

СОСТАВНЫЕ СТЕРЖНИ ПЕРЕМЕННОГО СЕЧЕНИЯ  [c.192]

Составные стержни переменного сечения проверяют на продольную устойчивость по приведенной длине  [c.374]

Составные стержни переменного сечения  [c.938]

Расчет соединительных планок составных стержней с решетками см. [18]. Расчет стержней переменного сечения см. [18], [21].  [c.296]

Стержни переменного сечения — Гибкость — Определение 692, 694 — Коэффициент длины 693 - сварных ферм—-Жесткость—Проверка 685 — Прочность — Проверка 685 — Устойчивость — Проверка 685 - сварных ферм переменного сечения составные 692  [c.847]


Б а б и ч В. В. Расчет устойчивости составных решетчатых стержней переменного сечения. — Вестник машиностроения , 1967, № 7.  [c.372]

Приварку токоотводов к внутренней или наружной поверхности стакана целесообразно осуществить посредством составного стержня с переменным сечением (рис. 23, е). При такой конструкции стержня, во-первых, сохраняется достаточно большое сечение опорной части резонирующего стержня, чем обеспечивается необходимая жесткость и, во-вторых, увеличивается зона доступа к сварочному наконечнику. Такая конструкция резонирующего стержня позволила, например, приварить стальные токоотводы к корпусу аккумулятора.  [c.44]

При проверке общей устойчивости стрелы от действия сжимающих сил в вертикальной плоскости стрела рассчитывается как стержень с шарнирными опорами в точках О и О, а в горизонтальной плоскости — как стержень с одним заделанным и другим свободным концом. При этом должна быть учтена переменность сечения по длине стрелы, а для решетчатых стрел необходимо учитывать, что они являются составными стержнями (гл. I, п. 3). При проверке устойчивости в горизонтальной плоскости влияние гибкой оттяжки улучшает условия устойчивости стрелы [0.3, 0.13. При совместном действии сжатия и изгиба проверку общей устойчивости стрелы см. 17, 19] в этих случаях вместо проверки общей устойчивости рекомендуется производить расчет на прочность по деформированной системе (рис. 3.89) с учетом начальных несовершенств (гл. I, п. 3) [0.13].  [c.356]

Концентратор стержневой (К. с.) — устройство для увеличения амплитуды колебательного смещения частиц колебательной скорости частиц) в низкочастотном УЗ-вом диапазоне представляет собой твёрды стержень переменного сечения или переменной плотности, присоединяемый к излучателю более широким концом или частью с большей плотностью материала. Принцип де1 ствия К. с. основан на увеличении амплитуды колебательного смещения частиц стержня вследствие уменьшения его поперечного сечения или плотности в соответствии с законом сохранения количества движения. При этом увеличение амплитуды смещения будет тем больше, чем больше различие диаметров или плотностей противоположных торцов стержня. К. с. применяются в УЗ-вой технологии. Они являются составной частью УЗ-вых колебательных систем, работающих в диапазоне частот от 18 до 100 кГц.  [c.170]

В книге в основном использован простой математический аппарат. В некоторых случаях более сложные математические представления н преобразования подробно расшифровьгааются, особенно там, где это требуется для уяснения основных понятий о работе составных стержней. В других случаях, например при расчете составных пластинок, составных стержней переменного сечения н т.п. предполагается знакомство читателя со специальным математическим аппаратом, относящимся к данному вопросу.  [c.4]


Автором в статье [44] бьшо дано обобщение теории составных стержней с жесткими поперечными связями на многослойные пластинки. В дальнейшем АР. Хечумов [53] распространил уравнения автора на анизотропные составные пластинки и на их динамику. Динамический расчет составных стержней был опубликован в статье [43]. Ю.В. Быховским [2] и Р.А. Хечумовым [58] были развиты вопросы расчета составных стержней переменного сечения.  [c.10]

Хечумов Р.А. Устойчивость составных стержней переменного сечения. - В кн. Исследования по теории стержней, пластинок и оболочек. -М. МИСИ, 1965, с. 106-113.  [c.310]

Установившаяся ползучесть составных стержней переменного сечения исследована также М. М. Манукяном [102]. Для каждого слоя введена функция напряжений, удовлетворяющая дифференциальному уравнению, выведенному Л. М. Качановым. Указаны условия сопряжения на границах слоев.  [c.230]

Примечание. Расчет устойчивости составных стержней зч пределом.пропорциональности см. [2 -], стр. 2ЙЗ расчет чстойчигюсти криволинейных стержней см. [25), стр. 291 устойчивость тонквстенных оболочек см. 117]. стр. 176 и (г. )]. стр. 296 устойчивость -гри кручении см. (25). стр. 292 устойчивость нитых пружин сжатия см. (171. стр. 172 устойчивость стержней переменного сечения см. (171, етр. 163 устойчивость плоской формы изгиба (в пределах пропорциональности) см. [17], стр. 170 устойчивость пластин см. [25], стр. 283 и [17], стр. 174.  [c.221]

Общей задаче о кручении составного стержня посвящена статья К. С. Чобаняна (1955) в ней приведена теорема о циркуляции касательного напряжения и рассмотрен вопрос о кручении составного стержня с сечением в виде тавра. В других работах К. С. Чобаняна рассмотрены изгиб составного стержня (1956), определение координат центра изгиба и кручение составного вала переменного диаметра (1958). Кручение многосвязного составного бруса исследовал И. В. Сухаревский (1954).  [c.30]

Излучатели второго типа основываются на различных физич. эффектах электромеханич. преобразования. Как правило, они линейны, т. е. воспроизводят по форме возбуждающий электрич. сигнал. Большинство излучателей УЗ предназначено для работы на к.-л. одной частоте, поэтому в устройстве излучающих преобразователей обычно используются резонансные колебания механич. системы, что позволяет существенно повысить их эффективность. Преобразователи без излучающей механич. системы, напр, основанные на электрич. разряде в жидкости, применяются редко. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магни-тострикционные преобразователи и пьезоэлектрические преобразователи. Элект-родинамич. излучателп используются на самых низких ультразвуковых частотах, а также в диапазоне слышимых частот. Наиболее широкое распространение в низкочастотном диапазоне УЗ получили излучатели магнитострикционного и пьезоэлектрич. типов. Основу магнитострикционных преобразователей составляет сердечник из магнитострикционного материала (никеля, специальных сплавов или ферритов) в форме стержня или кольца. Пьезоэлектрич. излучатели для этого диапазона частот имеют обычно составную стержневую конструкцию в виде пластины из пьезокерамики или пьезоэлектрич. кристалла, зажатой между двумя металлич. блоками. В магнитострикционных и пьезоэлектрич. преобразователях, рассчитанных на звуковые частоты, используются изгибные колебания пластин и стержней или радиальные колебания колец. В среднечастотном диапазоне УЗ применяются почти исключительно пьезоэлектрич. излучатели в виде пластин из пьезокерамики или кристаллов пьезоэлектриков (кварца, дигидрофосфата калия, ниобата лития и др.), совершающих продольные или сдвиговые резонансные колебания по толщине. Кпд пьезоэлектрич. и магнитострикционных преобразователей при излучении в жидкость и твёрдое тело в низкочастотном и среднечастотном диапазонах составляет 50—90%. Интенсивность излучения может достигать нескольких Вт/см у серийных пьезоэлектрич. излучателей и нескольких десятков Вт/см у магнитострикционных излучателей она ограничивается прочностью и нелинейными свойствами материала излучателей. Для увеличения интенсивности и амплитуды колебаний используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрич. преобразователя вогнутой формы, излучающего сходящуюся сферич. или цилиндрич. волну. В фокусе подобных концентраторов достигается интенсивность 10 —10 Вт/см на частотах порядка МГц. В низкочастотном диапазоне используются концентраторы — трансформаторы колебательной скорости в виде резонансных стержней переменного сечения, позволяющие получать амплитуды смещения до 50—80 мкм.  [c.14]


Обычно в принятых расчетных методиках корпусные детали турбин рассматриваются как составные осесимметричные оболочки переменной толщины, находящиеся в температурном поле, меняющемся вдоль оси и по радиусу оболочки. С применением таких расчетных методов был проведен анализ температурных напряжений в корпусах стопорных и регулирующих клапанов, а также ЦВД и ЦСД турбин типа К-200-130 [2]. Напряжения определялись по температурным полям, полученным термометриро-ванием корпусов при эксплуатации турбины. Полученные результаты дали общую картину термонапряженного состояния этих корпусов. Они показали, что максимальные напряжения в корпусе стопорного клапана имеют место в подфланцевой зоне, а в корпусах регулирующих клапанов — в месте их приварки к цилиндру и что наиболее термонапряженной зоной корпуса ЦВД является внутренняя поверхность стенки в зоне регулирующей ступени. Однако отсутствие учета влияния фланцев и других особенностей конструкции в этих расчетах приводит к тому, что полученные результаты не всегда, даже качественно, могут характеризовать термонапряженное состояние корпусов. В связи с этим предлагаются упрощенные методики учета влияния фланцев, в частности основанные на уравнениях для напряженного состояния при плоской деформации влияние фланца горизонтального разъема ЦВД часто оценивают по теории стержней. Для оценки кольцевых напряжений решается плоская задача при форме контура, соответствующей форме поперечного сечения. Йри этом рассматри-  [c.55]


Смотреть страницы где упоминается термин Составные стержни переменного сечения : [c.475]    [c.184]   
Смотреть главы в:

Составные стержни и пластинки  -> Составные стержни переменного сечения



ПОИСК



Вал переменного сечения

Конструирование Стержни составные переменного сечения 938 — Козфициент длин

Стержень переменного сечения

Стержень составной

Стержни переменного сечения Гибкость сварных ферм переменного сечения составные

Стержни сечений

Стержни ферм — Конструирование составные переменного сечения



© 2025 Mash-xxl.info Реклама на сайте