Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Роторы контрольно-управляющие

Роторы контрольно-управляющие 284, 285  [c.479]

Кроме технологических и транспортных роторов, в состав АРЛ могут входить контрольные, управляющие и логические роторы. Последние решают задачу о частичном отказе от подачи заготовок, о смене инструмента и коррекции технологического процесса.  [c.452]

По классификационным различиям контрольно-управляющие роторные машины аналогичны технологическим. В состав такой машины входят контрольный ротор, информационно-запоминающая система, сортирующее устройство и линия обратной связи с технологическими роторными машинами РАЛ. Датчики различают по способам расположения стационарно установленный общий индивидуальный в каждом блоке комбинированные конструкции.  [c.15]


Между технологической, контрольно-управляющей машинами и транспортным ротором, установленными в одной секции РАЛ, может быть введена обратная связь при сборе информации о размерах деталей по каждой струе технологического потока наступает такое состояние отказа (оговоренное техническими условиями), при котором информационно-запоминающее устройство выдает командный импульс на автоматическую замену инструментального блока, корректировку режима аппаратной обработки или останов секции РАЛ. Аналогичная связь устанавливается между исполнительными механизмами РАЛ и пультом управления.  [c.16]

В то же время команда на подачу инструмента в рабочий орган, из которого инструмент удален, автоматически повторяется, если подача нового инструмента не состоялась с первого раза. Что касается команды, определяющей необходимость смены данного инструмента и управляющей механизмами крепления блоков в роторе и их принудительного извлечения, то эта команда может быть получена либо непосредственно от автоматического прибора контроля состояния инструмента в роторе, либо путем использования показаний автоматического контрольного прибора качества заготовки в следующем за данным ротором контрольном роторе. Команда может быть подана и оператором на основании оценки им качества продукции или состояния инструмента.  [c.259]

Запоминающее устройство для фиксации показаний одного вида и сохранения их на протяжении числа шагов меньшем, чем число шагов в данном роторе, состоит (фиг. 137) из диска, смонтированного непосредственно на валу ротора и имеющего такое же количество запоминающих элементов, т. е. передвижных штырей, сколько рабочих органов в роторе. Показания контрольного прибора, относящиеся к данному органу ротора или к находящейся в нем заготовке, фиксируются смещением одного и того же передвижного штыря, относящегося к данному органу и расположенному в общей с ним радиальной плоскости. Смещение штыря производится кулачком, связанным с электромагнитом, управляемым показанием контроля через усилитель (ламповый или релейный). Целесообразно производить смещение штыря при отрицательном показании контрольного прибора. При положи-11 163  [c.163]

Регистры сдвига могут состоять из различных элементов, например из электромагнитных реле или электрических емкостей. Регистры, состоящие из электромагнитных реле, громоздки, требуют значительного расхода мощности, не обладают стабиль- ностью и безотказностью в работе регистры с запоминающими элементами, состоящими из конденсаторов, не гарантируют длительность времени сохранения импульсов ввиду возможной разрядки. Наиболее перспективными в настоящее время следует считать запоминающие устройства с регистрами сдвига, состоящими из ферритных (или ферромагнитных) тороидов. Ферритный тороид представляет собой кольцо из феррита, имеющее три обмотки (входную, выходную и управляющую), расположенные в различных секторах. Основное свойство ферритного тороида состоит в том, что при пропускании тока (импульса) через входную обмотку происходит намагничивание тороида, характеризуемое его определенной полярностью, а при пропускании тока через управляющую обмотку тороида — изменение полярности, возбуждающее ток в выходной обмотке. Фиксация показания контрольного прибора, осуществляемая пропусканием тока (запоминаемого импульса) через входную обмотку, заключается в намагничивании тороидального сердечника, которое может сохраняться весьма длительное время. Перемещение показания контроля из одного тороида в другой (сдвиг) осуществляется пропусканием тока (тактового импульса) через управляющую обмотку. Благодаря этому свойству ферромагнитные тороиды, работающие на малых токах и имеющие весьма малые размеры, образуют надежные и исключительно компактные регистры сдвига. В таком регистре каждая выходная обмотка предшествующего ферритного тороида соединяется последовательно с входной обмоткой последующего тороида (фиг. 141), а управляющие обмотки соединяются последовательно через одну в две группы (четные и нечетные). Группы обмоток соединяются с какими-либо двумя датчиками тактовых импульсов, работающими с некоторым смещением во времени один относительно другого. Нечетные феррит-ные тороиды являются собственно запоминающими элементами, сохраняющими импульсы в течение большей части шага, а четные — промежуточными, необходимыми для предотвращения сквозного прохода импульса через регистр. Для обслуживания роторной линии, например для осуществления функции сопровождения заготовки показаниями контрольного прибора, датчики тактовых импульсов срабатывают от каких-либо приводных элементов, например от кулачков, синхронно связанных с линией и обеспечивающих подачу управляющих импульсов на обе группы управляющих обмоток поочередно в течение каждого перемещения органа ротора или заготовки на один шаг. Очевидно, что для погашения зафиксированного импульса и прекращения его дальнейшего сдвига вдоль регистра достаточно разомкнуть цепь, сое-  [c.169]


Типовая схема контроля и разбраковки технологического потока показана на рис. VI.20. Технологический поток заготовки проходит через контрольный ротор /, 1де в позициях 2—7 осуществляется контроль заготовок с помощью электроконтактных датчиков. Съем сигналов датчиков осуществляется неподвижным токосъемником 8, включенным в сеточную цепь электронного реле 9. Бракованные заготовки сбрасываются с транспортного ротора 10 рычажной системой 11, управляемой электромагнитом 12. Рассмотренная схема является простейшей, так как в ней контроль и разбраковка заготовок осуществляются в пределах одного шага. Несоблюдение этого условия вызывает необходимость использования запоминающих устройств.  [c.304]

Наиболее развитые системы машин являются комплексом машин различных классов. Так, например, современные роторные и другие автоматические линии являются комплексом, в который входят энергетические машины в виде электроприводов, транспортные машины для перемещения обрабатываемого объекта в виде роторов или транспортеров, технологические машины, изменяющие форму, состав или структуру обрабатываемого объекта, контрольно-управляющие машины, контролирующие Качество и размеры получаемых изделий и регулирующие режим движения двигателей и рабочих органов, и, наконец, логические машины в виде машин, производящих подсчет количества выпускаемой продукции. В некоторых развитых машинных устройствах функции контроля и управления, а также логические функции могут выполняться не специальными машинами, а соответствующими приборами и системами, органически входящими в состав машинного устройства. Так, например, автомат для шлифования изделий с помощью шлифовального круга, представляющий собою технологическую машину, имеет в своем составе электропривод, являющийся энергетической машиной, и управляющее устройство, автоматически компенсирующее износ шлифовального круга. Фрезерный станок-автомат, представляющий собою технологическую машину, имеет в своем составе электропривод, т. е. энергетическую машину, систему программного управления, являющуюся управляющим устройством, систему контроля точности изготовления изделия и, наконец, систему переработкй информации в виде счетно-решающего устройства, корректирующего процесс. Даже менее развитые машинные устройства, как, например, паровая машина, имеют систему автоматического регулирования и управления в форме, например, центробежного регулятора.  [c.15]

Транспортные роторы могут быть использовану также для решения сложных зддач ориентации. Например, если деталь 7 (рис. 287,6) расположена головкой вверх, что легко обнаруживается соответствующим контрольным органом — щупом, и ее нужно переориентировать головкой вниз, то контрольный прибор подает команду на переключение управляемой стрелки копира 8 вниз, как показано на рисунке. Тогда ролик 2 ползу-  [c.531]

На автоматически действующее контрольное устройство БВ-933 (фиг. 224) поступает отшлифованная деталь для проверки размеров четырех шеек вала ротора электродвигателя. Это. устройство, как и предыдущее, встроено в автоматическую линию валов ЭНИМСа. Двухпредельный электроконтактный датчик БВ-Н779 дает команду на передачу годной детали на следующую операцию, а при выявлении брака — останов станка. Точность измерения 0,002 мм. Две каретки 4, каждая с двумя скобами, передвигаются на шариковых направляющих 12 к измеряемому валу. Скоба состоит из качающегося на плоской пружине 6 нижнего измерительного рычага 7, соединенного с верхним посредством крестового пружинного шарнира 9. Рычаг 8 передает отклонения размера вала на шток И датчика и индикатора 10. Каретки 4 со скобами передвигаются при помощи пневматического привода 13, управляемого золотником 14 от электромагнита 15. При передвижении каретки в исходное положение замыкаются контакты конечного выключателя 1, передающего команду на движение транспортера деталей. Как только очередная деталь попадает в контрольное устройство, каретки перемещаются из исходного положения до упора 5 и скобы входят в контакт с контролируемой деталью. После остановки кареток конец штока 2 пневмопривода 13 немного продолжит движение влево, пока не включит контакт конечного выключателя 3, в результате включается ток в цепь электроконтактного датчика 11. После измерения тем же концом штока 2 отключается ток питания датчиков 11, прибор перемещается в исходное положение и опять включается конечный выключатель 1, затем происходит транспортировка очередной детали.  [c.222]


Блок-схема САУ показана на рис. 8.17, а. Измерительная цепь системы состоит из динамометрического узла (рис. 8.17, б) с индуктивным датчиком, линейных усилителей и Лз с управляемой по заданной программе обратной связью и детектирующего элемента /Сд с контрольным прибором визуального наблюдения за силой Р . На релейную схему сравнения СС поступают сигналы из цепи измерения и от задатчика ЗУ. Если поступающие на СС сигналы не равны, то на выходе сравнивающего устройства появляется сигнал рассогласования. Поступая в цепь управления, сигнал рассогласования в зависимости от знака вызывает вращение ротора серводвигателя в таком направлении, при котором скорость движения стола (в результате работы управляемого золотника гидросистемы) изменяется так, чтобы сигнал измерения, пропорциональный величине Р , стремился сравняться с сигналом, поступающим с задатчика. Поскольку динамометрический узел, выполненный в виде центра, расположен в задней бабке, то по мере удаления места контакта круга со шлифуемым валом от заднего центра при Р = onst сигнал с динамометрического узла будет изменяться, так как он контролирует не Р , а ее реакцию. Для получения с динамометрического узла сигнала, пропорционального силе, Р , предусмотрено изменение коэффици-  [c.543]


Смотреть страницы где упоминается термин Роторы контрольно-управляющие : [c.232]    [c.28]    [c.128]    [c.164]    [c.167]    [c.190]    [c.257]    [c.258]   
Комплексные автоматические линии и участки Том 3 (1985) -- [ c.284 , c.285 ]



ПОИСК



Ротор



© 2025 Mash-xxl.info Реклама на сайте