Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соотношения между конечными приращениями напряжений и приращениями деформаций

Соотношения между конечными приращениями напряжений и приращениями деформаций  [c.388]

Хорошо известно, что, вообще говоря, в пластической области не существует однозначных зависимостей напряжений от деформаций. Деформации зависят не только от напряжений в конечном состоянии, но и от предыстории нагружения. Следовательно, связи напряжений с деформациями, которые использовались в теории упругости, в теории пластичности заменяются соотношениями между приращениями деформаций и напряжений. Это направление теории пластичности называется теорией приращений деформации или теорией пластического течения [1—6]. Было установлено, что деформационная теория пластичности, изложенная в предыдущей главе и представляющая собой частный случай теории пластического течения, непригодна для полного описания пластического поведения металлов.  [c.324]


При необходимости проследить напряженность диска в процессе его работы, учитывая историю нагружения и ее влияние на состояние материала, используются не конечные соотношения между напряжениями и деформациями, а выражения для их приращений.  [c.372]

Другое следствие из постулата Друкера состоит в том, что вектор de либо нормален к поверхности нагружения, если она гладкая, либо находится внутри конуса, образованного нормалями к поверхности, если точка нагружения представляет собою угловую точку. При формулировке деформационной теории было сделано предположение, что уравнения ее сохраняют силу тогда, когда То возрастает при убывании октаэдрического напряжения происходит разгрузка. Таким образом, поверхность нагружения в девиаторном пространстве представляет собою сферу s = onst. Это предположение, как оказывается, противоречит постулату Друкера. Действительно, обращаясь к выражению (16.4.3), мы замечаем, что второе слагаемое определяет составляющую вектора нормальную к поверхности сферы. Но первое слагаемое зависит от дифференциалов dan, поэтому вектор de" меняет свое направление в зависимости от соотношения между этими дифференциалами или непосредственно от вектора da. Отсюда следует, что точка М, конец вектора о, является угловой точкой поверхности нагружения. Если эта точка коническая и касательные к поверхности нагружения образуют конус с углом раствора 2 , уравнения деформационной теории справедливы до тех пор, пока вектор de не выходит за пределы конуса, образованного нормалями к поверхности нагружения, угол раствора этого конуса равен я — 2р. Необходимы специальные дополнительные гипотезы для того, чтобы выяснить связь между приращениями напряжений и деформаций, если последние выходят за пределы двух указанных конусов. При этом, конечно, переход от активной деформации к разгрузке происходит непрерывно.  [c.545]

Уравнения Праидтля-Рейсса (Х.23) и (Х.24) связывают напряжения с бесконечно малыми приращениями деформаций и напряжений, т, е. не являются конечными соотношениями. Они, вообще говоря, не интегрируются, т. е. не сводятся к конечным соотношениям между напряжениями и деформациями для произвольного нагружения или пути деформирования. Этот факт отражает зависимость деформаций от пути нагружения и напряжений от пути деформирования. Например, если из точки О (стпутями нагружения 1 и 2, то по уравнениям теории течения деформации в точке N будут различными. Если есть упрочнение, то при каждом заданном пути нагружения а / = аЧ i) I — некоторый параметр, например, время) можно вычислить деформации. Можно также найти напряжения, если задан путь деформирования (О- В этом случае материал может быть неупрочняю-щимся (задача XJ). ili  [c.218]


ОС НОРшая задача механики деформируемого твердого тела — описание процессов деформирования с учетом экспериментальных данных, определяющие соотношения которых могли бы быть использованы при решении конкретных технических задач. Поэтому развитие теории механики деформируемого твердого тела идет по пути постепенного усложнения и уточнения определяющих соотношений по мере накопления экспериментальных данных. В качестве основной исходной характеристики обычно принимают деформацию. При упругом деформировании (простейший вид) определяющие уравнения связи между напряжениями и деформациями можно записать, в виде конечных соотношений, при пластическом деформиро Банин — в приращениях или дифференциалах. В последнем случае процесс нагружения-деформирования зависит только от последовательности наложения элементарных процессов (нагрузки, разгрузки, повторной нагрузки и т. п,) и не зависит от промежутков времени, в течение которых эти процессы происходят, т. е. окончательный результат не зависит от масштаба времени. В более общем случае деформирования деформации могут зависеть от масштаба времени, например, изменение деформаций во времени при постоянном напряжении. Поэтому принято полные деформации разделять на мгновенные, или упругопластические, и длительные деформации ползучести.  [c.3]


Смотреть страницы где упоминается термин Соотношения между конечными приращениями напряжений и приращениями деформаций : [c.299]    [c.157]    [c.191]    [c.53]   
Смотреть главы в:

Вариационные методы в теории упругости и пластичности  -> Соотношения между конечными приращениями напряжений и приращениями деформаций



ПОИСК



5 — Соотношения между

597 — Деформации и напряжения

Деформации конечные

Напряжение конечное

Приращение

Приращения конечные

Соотношение между напряжениями

Соотношение между напряжениями и деформациями

Соотношения напряжения—деформации



© 2025 Mash-xxl.info Реклама на сайте