Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние водорода на прочность. Водородное охрупчивание

При выборе конструкционных материалов для оболочек твэлов, корпуса, технологических каналов атомных реакторов основным критерием в большинстве случаев являются их механические свойства. И это понятно, поскольку при облучении материала нейтронами до интегральной дозы 2-10 см каждый атом решетки испытывает более 100 смещений. При этом существенно изменяются структура и физико-механические свойства материалов. Облучение вызывает повышение пределов текучести и прочности, снижение ресурса пластичности, увеличение критической температуры перехода из хрупкого в вязкое состояние, размерные изменения за счет радиационного роста, ползучести и распухания. Вследствие ядерных реакций в материалах образуется большое количество газообразных примесей (гелий, водород), наличие которых в объеме приводит к возникновению таких явлений, как водородная хрупкость, гелиевое охрупчивание, газовое распухание. Существенное влияние на механические свойства материалов оказывают негазовые продукты ядерных превращений, которые могут выделяться в количествах, больших предела растворимости, и тем самым изменять фазовое состояние материалов [1, 2].  [c.54]


Один из основных видов коррозионного разрушения газонефтепромыслового оборудовармя — статическая водородная усталость (СВУ), т.е. снижение длительной прочности стали в результате водородного охрупчивания в условиях статического нагружения металла. Предел статической водородной усталости, соответствующий максимальному напряжению, при котором не наблюдается коррозионного растрескивания, зависит от многих взаимосвязанных факторов химического состава, термической обработки и механических свойств стали, уровня приложенных напряжений, количества поглощенного водорода, состояния поверхности и др. Влияние этих факторов не только взаимосвязано, но в некоторых случаях и противоположно. Поэтому нельзя рассматривать предельные напряжения, при которых не происходит сероводородного растрескивания, как абсолютные значения дог скаемыч напряжений. которые могут быть использованы при проектировании оборудования их следует рассматривать как сравнительные величины при сопоставлении стойкости различных металлов.  [c.35]

Состав и структура стали оказьтают на стойкость к СВУ гораздо большее влияние, чем на общую коррозию. Существенно влияет на сульфидное растрескивание углерод. С увеличением количества углерода склонность закаленных сталей к сульфидному растрескиванию растет вследствие увеличения внутренних напряжений, прочности стали. Малое количество водорода, проникающего в металл, не может вызвать достаточных для развития трещин локальных пластических деформаций в прочном материале. Считается, что сталь теряет пластичность при окклюзии водорода 7-12 см на 100 г металла. Однако водородное охрупчивание может происходить даже при незначительном количестве поглощенного водорода. Так, для стали марки 4340 (предел прочности 1600 МПа) химический состав следующий.  [c.36]

Нерастворимые элементы РЬ и Bi ухудшают механические свойства меди и однофазных сплавов на ее основе. Образуя легкоплавкие эвтектики (соответственно при 326 и 270 °С), располагаюш иеся по границам зерен основной фазы, они вызывают красноломкость. Причем вредное влияние висмута обнаруживается при его содержании в тысячных долях процента, поскольку его растворимость ограничивается 0,001 %. Вредное влияние свинца также проявляется при малых его концентрациях (< 0,04 %). Висмут, будучи хрупким металлом, охрупчивает медь и ее сплавы. Свинец, обладая низкой прочностью, снижает прочность медных сплавов, однако вследствие хорошей пластичности не вызывает их охрупчивания. Кроме того, свинец улучшает антифрикционные свойства и обрабатываемость резанием медных сплавов, поэтому его применяют для легирования. 3. Нерастворимые элементы О, S, Se, Те присутствуют в меди и ее сплавах в виде промежуточных фаз (например, СигО) СигЗ), которые образуют с медью эвтектики с высокой температурой плавления и не вызывают красноломкости. Кислород при отжиге меди в водороде вызывает водородную болезнь , которая может привести к разрушению металла при обработке давлением или эксплуатации готовых деталей.  [c.303]


Влияние покрытия алюминием ( 5 мкм), сформированного методом ионного легирования, на водородное охрупчивание высокопрочной мартенситостареющей стали состава, (%) 18,04 № 15,0 Сг 6,43 Мо 1,09 Т1 0,062 А1 С, Si, Мп, Р и 8 ниже 0,005 определяли при испытаниях на растяжение образцов с надрезом в атмосфере водорода при комнатной температуре и скорости деформации 1,7 мкм " [117]. Как показали результаты экспериментов, предел прочности при растяжении в вакууме образцов с покрытием и без покрытия примерно одинаков и равен 2800 МПа. Предел прочности при растяжении образцов в атмосфере водорода снижался при давлении водорода выше 2,67 кПа, но во всех случаях коррозионно-механическая прочность образцов с покрытием была выше, чем у образцов без покрытия.  [c.56]

В связи с рассмотренными гипотезами о механизме влияния межкристаллитной внутренней адсорбции примесей, ответственных за отпускную хрупкость, на водородное охрупчивание (4 /) — усиление абсорбции атомарного водорода на поверхности металл - электролит (2) - повышение локальной концентрации водорода на границах зёрен с примесями в зоне предразрушения (3) - аддитивное воздействие примесей и водорода на, когезивную прочность границ, интересны результаты [219, 2201. В этих работах рассмотрена кинетика заоождения и роста микротрещин, развивающихся в твердых растворах се-железа с Р, 8 и С без внешних механических напряжений под действием давления молекулярного водорода, заполняющего полость трещин и достигающего по оценкам [220] 1800 МПа. При этом условия ввода водорода в металл (катодное насыщение из N2804 с добавкой промотора наводороживания АвзО,, высокие плотности катодного тока) были такими, что позволяли не учитывать механизм (1), Средняя концентрация Н в твердом растворе в равновесии с в трещинах по оценкам работы [219] составляла (6 — 60) Ю , т.е. была выше локальной концентрации атомов Н 8 зоне предразрушения перед вершиной растущих трещин в сталях, склонных к замедленному разрушению в водороде. Это обстоятельство вместе с отсутствием существенной восходящей диффузии водорода к вершине в мягком железе, позволяло не учитывать при объяснении влияния примесей на сопротивление водородному охрупчиванию и гипотезу (2).  [c.180]

Влияние -стабилизирующих элементов на водородное охрупчивание титана было исследовано также в работе Джаффи и Вильямса [383]. В этой работе были изучены сплавы с -изоморфными стабилизаторами (молибден, ванадий, ниобий, тантал) и -эвтектоидными стабилизаторами (марганец, железо, хром). Сплавы были приготовлены на иодидном (0,03% Ог), магниетермическом (0,108% Ог) и магниетермическом титане с дополнительно введеины.м кислородом (0,27% Ог). В сплавы было введено 0,02 0,03 0,04 0,06 и 0,087о Нг. Сплавы испытывали на ударную вязкость, на растяжение с большой и малой скоростью растяжения и иа длительную прочность. Поскольку в работе ставилась цель не установить истинные допуски на содержание водорода, а оценить сравнительную склонность к водородному охрупчиванию, то испытания на растяжение проводили на гладких образцах. Применение гладких образцов позволило устранить эффекты, связанные с различным влиянием легирующих элементов на склонность титана к надрезу. Результаты обширных исследований по влиянию -ста-билизаторов на водородное охрупчивание титана, проведенных указанными авторами, представлены в табл. 36.  [c.403]

При сварке титановых сплавов у сварных соединений наблюдается склонность к замедленному разрушению, причиной которого является повышенное содержание водорода в сварном соединении в сочетании с растягивающими напряжениями первого рода (остаточными сварочными и от внешней нагрузки). Влияние водорода на склонность к трещинооб-разованию возрастает при увеличении содержания других примесей (кислорода и азота) и вследствие общего снижения пластичности при образовании хрупких фаз в процессе охлаждения и старения. Отрицательное влияние водорода при трещинообразовании - результат гид-ридного превращения и адсорбционного эф-фекга снижения прочности. Наибольшее влияние водород оказывает на а-сплавы в связи с ничтожной растворимостью в них водорода (<0,001 %). Растворимость водорода в Р-фазе значительно выше, поэтому сплавы, содержащие Р-фазу, менее чувствительны к водородному охрупчиванию вместе с тем повышенная растворимость водорода в Р-фазе увеличивает опасность наводороживания. Склонность к растрескиванию увеличивается при повышенном содержании водорода в исходном материале насыщении водородом в процессе сварки (из-за недостаточно тщательной подготовки сварочных материалов, свариваемых кромок и т.д.) насыщении водородом в ходе технологической обработки сварных соединений и эксплуатации.  [c.126]


Имеются указания относительно того, что когда процесс коррозионного растрескивания связан с наличием активных участков, тогда влияние напряжений на растрескивание состоит в создании пластической деформации, и поэтому такой вид разрушения будет наиболее вероятен для пластичных металлов пониженной прочности. Когда механизм растрескивания обусловлен охрупчиванием металла в вершине трещины, тогда становится значимой величина работы деформации, а это означает, в соответствии с уравнением (5.1), что прн разрушении пластическая деформация должна быть минимальной, а упругая энергия — максимальной. Такие условия наиболее часто удовлетворяют материалам с высокими значениями предела текучести. С большой достоверностью установлено, что водородное охрупчивание сталей становится наиболее заметным прн повышеинн предела текучести, хотя изменения структуры илн состава, которые способствуют изменению значения предела текучести илн вязкости разрушения, также могут оказывать влияние иа электрохимические характеристики и диффузию водорода. Изменения этих параметров могут оказывать такое же значительное влияние на коррозионное растрескивание, как и изменения прочностных характеристик.  [c.239]


Смотреть страницы где упоминается термин Влияние водорода на прочность. Водородное охрупчивание : [c.368]    [c.344]    [c.42]    [c.83]    [c.76]    [c.266]   
Смотреть главы в:

Триботехника  -> Влияние водорода на прочность. Водородное охрупчивание



ПОИСК



Водород

Водородная

Водородное охрупчивание

Охрупчивание



© 2025 Mash-xxl.info Реклама на сайте