Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость звука и критические параметры в двухфазных потоках

Подробный алгоритм итерационного метода нахождения критического расхода приведен в следующем параграфе. Что касается скорости звука, которая в двухфазной среде может оказаться на 1—2 порядка ниже, чем в жидкости или паре (газе), то она меняется в широких пределах в зависимости от структуры потока и степени термического и механического равновесия фаз при одних и тех же параметрах торможения, принимает значения от минимального, равного термодинамически равновесной скорости звука, до того максимального, которое устанавливается в выходном сечении канала. Если изменение параметров потока внутри трубы происходит таким образом, что на конечном ее участке непрерывно увеличивающаяся скорость потока оказывается в каждом сечении близкой к непрерывно возрастающей к выходному срезу канала локальной скорости звука, то на указанном конечном участке трубы возможна реализация режима течения, близкого к звуковому.  [c.124]


Приведенная зависимость может быть использована для определения критических параметров смеси по известным параметрам заторможенного потока. При этом для определения скорости звука, критической скорости истечения и критического расхода двухфазной смеси можно воспользоваться известными зависимостями механики сплошной среды  [c.173]

Наконец, в двухфазном потоке [13] скорость звука при одних и тех же макроскопических параметрах в. зависимости от принятой физической модели процесса распростране-. ния волны возмущения может меняться от нескольких метров в секунду до нескольких сот метров в секунду. Таким образом, встает вопрос о том, с какой же из этих многочисленных скоростей, звука можно отождествлять критическую скорость течения.  [c.73]

Наконец, в однофазном потоке момент наступления кризиса движения связывается с достижением потоком скорости, равной в критическом сечении локальной скорости звука. В зависимости от структуры двухфазной смеси и степени завершенности обменных процессов за время распространения звуковой волны скорость волны может меняться в широком диапазоне значений при одних и тех же параметрах смеси. Минимальное значение скорости звука отвечает нижней границе дисперсии звука и связывается с понятием термодинамической (точнее был бы термин термодинамически равновесной) скорости звука (рис. 2, кривая 1). Такой скорость распространения малых возмущений может быть только при условии, что за время распространения волны возмущения успевают произойти все обменные процессы между фазами мас-сообмен (фазовый переход), теплообмен и обмен количеством  [c.170]

На основании всего вышеизложенного можно сделать вывод о том, что во многих интересующих практику случаях двухфазный поток в трансзвуковой области течения представляет собой однородную гомогенную среду, критическую скорость истечения которой можно отождествлять с такой скоростью звуковой волны, за время распространения которой из всех возможных обменных процессов завершается лишь обмен количеством движения, а остальные обменные процессы полностью заморожены . При этом и сама скорость звука, и критическая скорость истечения, и кри-тический расход, и необходимые для определения последних критические параметры смеси могут быть найдены с помощью предложенного здесь показателя адиабаты двухфазной смеси.  [c.174]


В связи с изложенным представляется целесообразным именно с этой скоростью звука (кривая5) сопоставить критическую скорость истечения. Для этого прежде всего необходимо уметь определять критические параметры двухфазной смеси по известным параметрам заторможенного потока. В однофазном адиабатном потоке эта задача однозначно решается с помощью показателя адиабаты (изоэнтропы). Рассматривая двухфазную смесь как гомогенную смесь идеального газа и несжимаемой жидкости, полагаем, что в основе механизма обмена количеством движения лежит не вязкое трение, а упругое столкновение молекул газа с частицами конденсированной фазы. Таким образом, разгон жидкой фазы, так же как увеличение скорости газа, осуществляется за счет уменьшения энергии молекул газа.  [c.172]

Используя уравнения (5.1)-(5.14), рассчитываются основные параметры процесса кавитации в сопле Вентури, такие как скорость потока в критическом сечении сопла и в любой точке кавитационной области (Р, статическое давление в области кавитации 7 ,,, массовый расход через любое произвольное взятое сечение области кавитации, обьемный расход двухфазной среды, из которой состоит область кавигации, плотность двухфазной среды р в любом произвольно взятом сечении области кави тации, объемная концентрация газовой фазы, массовые расходы жидкой 7 и газовой С фаз, полное давление потока Р в произвольнее взятом сечении области кавитации, местная скорость звука а в любой точке области кавитации, длина 5 области кавитирующей жидкости.  [c.149]

При этом для показателя изоэнтропы к предложено выражение, которое позволяет не только определять скорость звука на реальной нижней границе дисперсии, но и по известным параметрам заторможенного потока двухфазной смеси определять критические параметры смеси, критический расход и критическую скорость истечения двухфазной смеси. Выражение (2.13) обладает тем преимуществом перед другими известными выражениями для определения скорости звука в двухфазной смеси, что одинаково хорошо описывает скорость распространения возмущения в среде с любой степенью сжимаемости на верхней и нижней границах дисперсии, а также при неполном обмене количеством движения между фазами. Различными будут лишь выражения для показателя изознтропы. Так, например, для идеального газа к = ср/с -, на верхней границе дисперсии звука показатель изоэнтропы смеси равен значению показателя изознтропы сжимаемой фазы, а для термодинамически равновесной скорости звука на нижней границе дисперсии к = (Т/р) (yj p) х y-(dpldT) , Предложенное в [55] выражение для показателя изоэнтропы однородной двухфазной смеси получено в предположении, что фазы являются взаимопроникающими и ведут себя в смеси подобно смеси разнородных газов (Fj. = Уж = см)-В [58] предложено аналогичное выражение для показателя изоэнтропы двухфазной смеси пузырьковой структуры, в которой Уем = Уг + Уж-  [c.37]

Ранее [17] установлено, что при критическом истечении однофазной жидкости влияние сжимаемости ок ывается определяющим при протекании процесса в области, автомодельной по числу Рейнольдса (Re), при этом влияние диссипативных сил в околозвуковой области течения становится исчезающе малым вследствие вырождения турбулентности. Однако практическое использование этого эффекта в трубах при движении в них однофазных сред проблематично, прежде всего, из-за большой скорости звука в таких средах. Кроме того, влияние этого эффекта при движении однофазной среды реализуется лишь на очень коротком участке трубы, примыкающем к выходному сечению трубы, так как скорость звука в адиабатном канале постоянного сечения при движении в нем однофазной среды достигается лишь один раз на выходе из канала. Иначе обстоит дело со скоростью звука в двухфазном потоке как показано в [55], при одних и тех же параметрах торможения в зависимости от структуры двухфазного потока и степени термического и механического равновесия фаз в нем скорость звука может меняться в очень широких пределах. Кроме того, в настоящее время теоретически обоснован и экспериментально подтвержден тот факт, что скорость звука в двухфазном потоке при определенном соотношении фаз может оказаться на два порядка ниже, чем в жидкой фазе. Таким образом, трансзвуковой режим течения может быть достигнут на конечном участке длины трубопровода при умеренных значениях скорости звука (несколько десятков и даже несколько метров в секунду). В этом случае коэффициент сопротивления является функцией не только вязкости потока, но и его сжимаемости, определяемой числом Маха. Более того, при движении с околозвуковой скоростью влияние wi nnaTHBHbLX сил становится исчезающее малым вследствие вырождения турбулентности. Уменьшение потерь на трение при больших массовых расходах отмечалось в опытах при движении двухфазной смеси в замкнутых контурах циркуляции [32]. Таким образом, при критическом истечении влияние сжимаемости  [c.119]


Знание критического расхода необходимо для расчета струйных аппаратов, в которых рабочим телом являются адиабатно-вскипающие жидкости (при анализе аварийных режимов в ЯЭУ, в транзитных трубопроводах при теплоснабжении от ядерных источников энергии, при трубопроводном транспорте сжиженного газа, в геотермальной энергетике, в ракетной и криогенной технике и во многих других практически важных случаях, которые достаточно подробно описаны в [55]). Признаками, характеризующими момент достижения кризиса течения в канале, являются достижение максимального критического расхода, критической скорости истечения (равной локальной скорости звука) в критическом сечении канала, установление в этом сечении давления, отличного от противодавления и не зависящего от него (стащюнарное положение волны возмущения в критическом сечении). Реализация любого из этих признаков в одномерном газовом потоке служат необходимым и достаточным условием установления критического режима течения. При истечении вскипающих потоков установление максимума расхода, так же как и стационарное положение волны возмущения в критическом потоке, являются необходимыми условиями, но недостаточными для достижения кризиса течения в традищюнном его понимании, так как в широком диапазоне противодавлений давление в критическом сечении, отличаясь от противодавления, не остается от него не зависящим. Это обстоятельство объясняется тем, что в одномерном двухфазном потоке скорость звука определяется не только параметрами среды, но и степенью завершенности обменных процессов в самой волне возмущения.  [c.162]


Смотреть страницы где упоминается термин Скорость звука и критические параметры в двухфазных потоках : [c.79]   
Смотреть главы в:

Гидрогазодинамика Учебное пособие для вузов  -> Скорость звука и критические параметры в двухфазных потоках



ПОИСК



Двухфазные потоки

Параметр критический

Параметры потока

Поток скорости

Скорость в двухфазном потоке

Скорость звука

Скорость звука в потоке и критическая скорость

Скорость критическая



© 2025 Mash-xxl.info Реклама на сайте