Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамические процессы в гальваническом элементе

ТЕРМОДИНАМИЧЕСКИЕ ПРОЦЕССЫ В ГАЛЬВАНИЧЕСКОМ ЭЛЕМЕНТЕ  [c.229]

Покажем на примере следующих, различающихся по своей физической природе явлений деформации упругого твердого тела, процесса в гальваническом элементе, теплового излучения, как осуществляется термодинамический анализ.  [c.160]

Проиллюстрируем метод термодинамических потенциалов на следующих различных по физической природе явлениях — упругой деформации твердого тела и процессе в гальваническом элементе. Определим в качестве первого примера тепловой эффект при деформации упругого твердого стержня. Предположим для определенности, что упругий твердый стержень, находящийся в среде с постоянным давлением и температурой, подвергается растяжению внешней силой. Работа упругих сил стержня при удлинении на dy равна —Pdy, где Р — внешняя сила, действующая на стержень. Отметим, что P/Q — напряжение, развивающееся в стержне, равное по условию упругости Mdy/y, где М — модуль упругости, а 2 — площадь поперечного сечения стержня. Из выражения для работы вытекает, что у эквивалентно V,a Р эквивалентно—р. Поэтому на основании выражения (2.35) после замены в нем /7 на — р, а V нг у имеем  [c.282]


Объектом термодинамического рассмотрения в этой главе будут, разумеется, лишь обратимые гальванические элементы. Подчеркнем еще раз, что под обратимым элементом имеется в виду такой гальванический элемент, в котором при изменении тока на противоположное на электродах происходят химические реакции, обратные реакциям, происходящим при протекании тока в прежнем направлении понятно, что условием обратимости процесса в гальваническом элементе является также отсутствие диффузии, теплопроводности, термодиффузии.  [c.221]

С этой целью с термодинамической точки зрения рассматриваются процессы, происходящие в двигателях внутреннего сгорания и реактивных двигателях, явления в гальванических элементах, вопросы теплоемкости, поверхностного натяжения, поведение вещества при низких температурах и т. п.  [c.3]

Так как коррозионные процессы в щелях (зазорах) и в трещинах протекают в основном вследствие реализации там коррозионных гальванических элементов, рассмотрим вкратце термодинамические аспекты их функционирования.  [c.60]

Процесс коррозии может протекать по гомогенно-электрохимическому и гетерогенно-электрохимическому механизмам. Для жидких металлов, амальгам и чистых твердых металлов, поверхность которых эквипотенциальна, в любой точке поверхности могут происходить катодный или анодный процессы, скорости которых равны. При наличии на поверхности металла фаз с разными термодинамическими свойствами происходит пространственное разделение катодного и анодного процесса (гетерогенный механизм), возникают так называемые локальные элементы. Как правило, анодный процесс локализуется на менее благородной фазе. Причины возникновения электрохимической неоднородности и типы коррозионных гальванических элементов приведены в табл. 2.3.  [c.17]

При соприкосновении различных металлов друг с другом в электролите образуется гальванический элемент. Металл, обладающий в данных условиях более электроотрицательным потенциалом, служит анодом этого гальванического элемента и, если такой анод термодинамически неустойчив, он растворяется. Второй из контактирующих металлов будет в этом элементе катодом, и на его поверхности будут протекать катодные процессы.  [c.81]

Раздел 2 — Термодинамика квазистатических (обратимых) процессов и состояний равновесия (обратимые изотермические процессы свободная энергия системы математические теоремы об интегрирующем множителе линейных форм в полных дифференциалах основное уравнение термодинамики обратимых процессов энтропия равенство Клаузиуса следствия основного уравнения термодинамики обратимых процессов, относящиеся к равновесным состояниям общие формулы, относящиеся к свободной энергии абсолютная термодинамическая температурная шкала цикл Карно следствия второго начала,. касающиеся обратимых процессов расширения и нагревания газа или жидкости связь эффекта Джоуля—Томсона с уравнением состояния применение этого эффекта для охлаждения газов магнитный метод охлаждения термодинамика гальванического элемента равновесное излучение закон Кирхгофа закон Стефана—Больцмана для равновесного излучения характеристические функции).  [c.364]


Наконец, в противоположность физическим процессам изменения состояния, в которых работа всегда представляет собой работу изменения объема рабочего тела (расширения или сжатия), химическая реакция может сопровождаться работой, не связанной с изменением объема реагирующей системы (например, работа тока в цепи гальванического или топливного элемента). Такая работа называется полезной работой химической реакции. В термодинамически обратимых процессах, где эта работа имеет наибольшее значение, она называется максимальной полезной работой или просто максимальной работой. В противоположность этому работа, связанная с изменением объема системы, происходящим вследствие изменения числа киломолей при реакции, называется минимальной работой.  [c.261]

Как указывалось выше, процесс электрохимической коррозии, возникающий вследствие термодинамической неустойчивости металла, при наличии гетерогенности поверхности последнего сопровождается перетеканием электронов от анодных участков металла к катодным и ионов в электролите. Разность потенциалов катодных и анодных участков создает электрический ток, сила которого эквивалентна скорости коррозии и может быть измерена при заданных условиях. Потенциалы электродов, через которые протекает электрический ток после замыкания цепи, отличаются от начальных потенциалов, и при этом наблюдается уменьшение электродвижущей силы гальванического и, в частном случае, коррозионного элемента. Это изменение начальных потенциалов, приводящее к уменьшению коррозионного тока и, следовательно, скорости коррозии, называется поляризацией.  [c.30]

Термодинамические процессы в гальваническом элементе. Изменение энтропии гальванического элемента в изотермическом процессе g = onst определяется соотношением (2.127). Теплота и работа в этом процессе могут быть рассчитаны по (2.91) и (2.114) либо с учетом (2.147) по формулам  [c.164]

Предприняв термодинамическое исследование ряда гальванических элементов в неводных растворах, Л. В. Писаржевский сумел впервые в физической химии дать строго обоснованные выводы по влиянию растворителя на константу равновесия химического процесса. Эти исследования привели Л. В. Писаржевского к выводу о том, что химическая природа растворителя оказывает на равновесие гораздо большее влияние, нежели температура.  [c.174]

Для определения термодинамических свойств сплавов чаш е всего применяют два метода — измерение электродвижуш ей силы гальванического элемента с расплавленным солевым электролитом и измерение давления насыщенного пара одного или нескольких компонентов сплава. Наибольшее число изученных систем исследовано первым методом ввиду конструктивной простоты и надежности при относительно невысоких температурах (порядка от 200 до 800— 900° С). Однако метод измерения э.д. с. с расплавленным солевым электролитом вряд ли надежен при исследовании сплавов типа жаропрочных. С одной стороны, из-за наличия у жаропрочных металлов большого числа галоидных соединений и возможной близости свободной энергии образования их для обоих компонентов сплава возникают трудности в определении вида и заряда катиона, ответственного за токообразующий процесс в гальванической ячейке. С другой стороны, наличие жидкого электролита ограничивает температурный интервал исследований, что при очень малой скорости диффузии в жаропрочных сплавах может привести к нарушению фазового равновесия между поверхностью и объемом электродов.  [c.197]

В качестве примера применения свобод- ной энергии для решения термодинамических задач рассмотрим связь электродвижуш,ей силы гальванического элемента с другими параметрами, характеризующими состояние системы. Остановимся на рассмотрении слу чая обратимого изотермического процесса. Запишем выражение работы гальванического элемента  [c.163]

III начало термодинамики установлено Вальтером Нернстом (W. F. Nernst, 1906) как обобщение экспериментальных данных по термодинамике гальванических элементов в форме так называемой тепловой теоремы Нернста. Она требует, чтобы всякий термодинамический процесс, протекаюш,ий при фиксированной температуре в, сколь угодно близкой к нулю, в < 0о — О, не сопровождался бы изменением энтропии S (ИНЫМИ словами, изотерма 0 = 0 совпадает с предельной адиабатой 5о). Приведенная нами ранее формулировка Планка является более жесткой (и, конечно, более удобной), она требует, чтобы величина 5q была конечной и 5q = 0. В следующем томе, посвященном равновесной статистической механике, мы покажем, что мягкая формулировка Нернста не является собственно аксиомой, как в макроскопической термодинамике, а может быть получена в микроскопическом подходе по существу автоматически.  [c.59]


Металлы обладают электронной, а электролиты — ионной проводимостью. Поэтому анодные и катодные процессы протекают раздельно на разных участках поверхности металла, образуя микроаноды и микрокатоды. Они составляют микропары, которые являются как бы электродами микро-гальванического (коррозионного) элемента (рис. 1.10.). В элементе возникает электрический ток, сила которого при замыкании коррозионного элемента может быть измерена. Возникновение микропар, микрокоррозионных элементов на поверхности металла может быть следствием не только его термодинамической неустойчивости, вызывающей его ионизацию — окисление, но и различных неоднородностей как в самом металле, так и на его поверхности, пленок на металле. Микропары могут возникать и вследствие неравномерности концентрации ионов электролита в приэлектродном слое, неравномерности доступа и распределения кислорода или другого окислителя в растворе и т. п.  [c.34]


Смотреть страницы где упоминается термин Термодинамические процессы в гальваническом элементе : [c.229]    [c.315]    [c.220]    [c.193]    [c.48]    [c.148]   
Смотреть главы в:

Сложные термодинамические системы Изд.2  -> Термодинамические процессы в гальваническом элементе



ПОИСК



Гальванические процессы

Гальванический цех

Процессы термодинамические

Элемент гальванический



© 2025 Mash-xxl.info Реклама на сайте