Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение влажного пара в решетках турбин

ГЛАВА ТРЕТЬЯ ТЕЧЕНИЕ ВЛАЖНОГО ПАРА В РЕШЕТКАХ ТУРБИН  [c.72]

ТЕЧЕНИЕ ВЛАЖНОГО ПАРА В РЕШЕТКАХ ТУРБИН  [c.292]

В лаборатории турбомашин МЭИ введены в эксплуатацию различные стенды влажного пара, ориентированные на экспериментальное изучение следующих основных задач I) механизма конденсации в равновесных и неравновесных течениях влажного пара при больших скоростях и, в частности, скачковой конденсации 2) механизма и скорости распространения возмущений в двухфазной среде и условий перехода через скорость звука 3) основных свойств дозвуковых и сверхзвуковых течений в каналах различной формы с подробным изучением волн разрежения и скачков уплотнения в эту группу включаются исследования основных энергетических и расходных характеристик сопл, диффузоров и других каналов 4) двухфазного пограничного слоя и пленок, образующихся на поверхностях различных форм 5) течений влажного пара в решетках турбин (плоских, прямых и кольцевых) с подробным изучением структуры потока, углов выхода, коэффициентов расхода и потерь энергии 6) структуры потока и потерь энергии в турбинных ступенях, работающих на влажном паре, с подробным изучением оптимальных условий сепарации влаги из проточной части и явлений эрозии.  [c.388]


Одним из эффективных методов снижения потерь от влажности пара является проектирование ступеней и решеток турбины с учетом особенностей течения влажного пара. В частности, увеличение зазора между сопловыми и рабочими решетками ведет к выравниванию потока при входе на рабочее колесо и дополнительному разгону капель влаги. Однако за счет этого уменьшается кинетическая энергия потока на входе в рабочую решетку. Поэтому в каждой ступени существуют оптимальное соотношение размеров и оптимальный осевой зазор. Опыты показали, что увеличение осевого зазора существенно не сказывается на экономичности ступени. В некоторых турбинах размер осевого зазора в периферийной части последних ступеней доходит до 100 мм и более. Существуют и другие методы рационального проектирования ступени уменьшение окружной скорости на периферии лопаток, достигаемое сокращением высоты лопаток, переходом на пониженную частоту вращения, уменьшением числа сопловых лопаток, благодаря чему сокращается количество крупной влаги, срывающейся с выходных кромок сопловых лопаток и попадающей на рабочие лопатки.  [c.154]

Таким образом, при течении слабо перегретого и влажного пара в сопловых решетках происходит заметное изменение распределения давления по профилю, что независимо от других эффектов, создаваемых жидкой фазой, ведет к некоторому изменению аэродинамических характеристик турбинных решеток (профильных потерь и углов выхода потока). Возможные отклонения пр и Ui обусловлены изменением толщины пограничных слоев на вогнутой ло-верхности и на спинке, смещением области  [c.83]

В последних ступенях турбин протекает влажный пар, что приводит к потерям от влажности и дополнительному снижению относительного внутреннего КПД. Капли влаги, особенно крупные, протекают через ступень по своим траекториям, отличным от траекторий течения пара. В частности, они вызывают тормозящий эффект, объясняемый с помощью рис. 2.21. Капли влаги, протекая через сопловую решетку, не успевают разогнаться до скорости пара, приобретают скорость jg < С[ ив результате входят в рабочую решетку со скоростью W g, направленной навстречу окружной скорости движения диска и.  [c.46]

В лаборатории турбомашин МЭИ используются различные стенды влажнога водяного пара, ориентированные на изучение 1) условий подобия и моделирования двухфазных течений в различных каналах и в элементах проточной части турбин АЭС 2) механизмов скачковой и вихревой конденсации пара в соплах каналах и решетках турбин при дозвуковых и сверхзвуковых скоростях 3) влияния периодической нестационарности и турбулентности на процессы образования дискретной фазы, взаимодействия фаз и интегральные характеристики потоков 4) двухфазного пограничного слоя и пленок в безградиентных и градиентных течениях 5) механизма и скорости распространения возмущений в двухфазной среде, а также критических режимов в различных каналах в стационарных и нестационарных потоках 6) основных свойств и характеристик дозвуковых и сверхзвуковых течений в соплах, диффузорах, трубах, отверстиях и щелях 7) влияния тепло- и массообмена на характеристики потоков в различных каналах 8) течений влажного пара в решетках турбин с подробным изучением структуры потока и газодинамических характеристик 9) структуре потока, потерь энергии и эрозионного процесса в турбинных ступенях, работающих на влажном паре 10) рабочего процесса двухфазных струйных аппаратов (эжекторов i и инжекторов).  [c.22]


Сложность структуры потока влажного пара в турбинных решетках (см. гл. 3) едва ли позволяет в настоящее время решить проблему в рамках единого метода. Численное моделирование таких течений должно строиться на базе системы алгоритмов и программ, позволяющих проводить последовательное уточнение путем учета различных физических факторов. В этой связи создание-методов расчета течений насыщенного и влажного пара в межло-паточных каналах решеток в широком диапазоне газодинамических параметров с учетом термодинамической и механической неравно-весности двухфазных потоков является важной задачей. Решение этой задачи дает возможность получить информацию о распределении параметров на внешней границе двухфазного пограничного слоя и тем самым создает предпосылки для обоснованного учета и других особенностей течения влажного пара в решетках. Необходимо также подчеркнуть, что развитая ниже методика расчета плоских двухфазных течений применима к каналам любой формы.  [c.125]

Обработка опытных данных по формуле (4-16) дает совпадающие значения коэффициентов .ii и ц в области перегретого пара и существенно меньшие значения i.iin в области влажного пара. Уменьшение коэффициентов ип, рассчитанных по предельно неравновесной схеме, вызвано ростом дополнительных потерь от взаимодействия фаз. Это доказывает, что неравновесный процесс физически более правильно отражает картину течения влажного пара в сопловых решетках турбин. Следует, однако, отметить, что данный вывод относится к результатам испытаний решеток при круинодис-персной начальной влаге. Для капель размером d<5 10 м при давлении среды р>0,5 Kz j M- процесс расширения будет протекать практически равновесно (см. рис. 1-2), и, следовательно, коэффициент расхода примет иные значения.  [c.86]

Течение влажного пара в турбинных решетках имеет по сравнению с течением перегретого пара ряд особенностей. Так, его расширение иногда происходит с запаздыванием конденсации, приводящим к переохлаждению, которое может быть различным не только вдоль по потоку, но и в поперечном направлении— по шагу решетки, а также по ее высоте. На входе в решетку влага может иметь различную дисперсность. Капли разных диаметров имеют неодинаковые траектории, а также различные скорости и углы течения, отличающиеся от скоростей и углов течения паровой фазы. Внутри потока пара могут образовываться новые капли, которые испаряются и разрушаются, переходят в пленку. При этом в канале происходит трение, тепло- и массообмеп между фазами.  [c.57]

Влажный пар в отличие от перегретого является двухфазной средой, т.е. в сухом насыщенном паре (газовая фаза) взвешены частицы влаги (жидкая фаза). Течение влажного пара в турбинной ступени сопровождается рядом явлений, которые не наблюдаются при течении перегретого пара. В сопловой и рабочей решетках относительно крупные частицы влаги движутся с отставанием от паровой фазы, скорость капель влаги существенно меньше скорости пара. Отношение скорости капель влаги к скорости пара igjj/ i называется коэффициентом скольжения. Для потока в турбинной ступени при течении влажного пара можно построить треугольники скоростей как для паровой фазы, так и для капель влаги (рис. 3.28). Так как скорость капель влаги на выходе из сопловой решетки в абсолютном движении мала, относительная скорость капель на входе в рабочие лопатки направлена под большим углом к входной кромке рабочей лопатки и относительно большая по значению. При ударе капель влаги о входную кромку лопатки со стороны ее спинки создается тормозной момент на роторе и,  [c.99]

Коэффициенты расхода решеток, как и коэффициенты потерь зависят от геометрических характеристик решеток и режимных параметров течения (рис. 3.4). Для влажного пара коэффициенты расхода выше, чем для перегретого пара (рис. 3.5), что связано с неравновесным расшрфе-нием пара в турбинной решетке, в результате которого его удельный объем в выходном сечении решетки уменьшается по сравнению с удельным объемом, рассчитанным из условия термодинамически равновесного расширения. Приведенные значения коэффициентов расхода для перегретого и влажного пара являются усредненными. Для решеток профилей, применяемых на заводах, обычно известны экспериментальные характеристики и, в частности, коэффициенты расхода, поэтому в этих случаях в расчетах принимают более точные экспериментальные значения.  [c.82]



Смотреть страницы где упоминается термин Течение влажного пара в решетках турбин : [c.42]    [c.49]    [c.73]    [c.329]    [c.82]    [c.103]    [c.261]   
Смотреть главы в:

Двухфазные течения в элементах теплоэнергетического оборудования  -> Течение влажного пара в решетках турбин



ПОИСК



Влажный пар

Глава одиннадцатая Течение влажного пара в решетках турбин 11- 1. Структура потока влажного пара в неподвижных решетках турбин

Решетка турбинная

Решетки турбин

ТТ с влажным паром



© 2025 Mash-xxl.info Реклама на сайте