Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Результаты измерений для сплавов в твердом состоянии

РЕЗУЛЬТАТЫ ИЗМЕРЕНИИ ДЛЯ СПЛАВОВ В ТВЕРДОМ СОСТОЯНИИ 121  [c.121]

Результаты измерений для сплавов в твердом состоянии  [c.121]

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ ДЛЯ СПЛАВОВ В ТВЕРДОМ СОСТОЯНИИ [23  [c.123]

Диаграмма состояния. Работами ряда исследователей установлено, что золото и кадмий полностью смешиваются в жидком состоянии, а при затвердевании образуют ряд промежуточных фаз с большим числом превращений в твердом состоянии [1—22]. Диаграмма состояния системы Аи — d приведена на рис. 8. При построении этой диаграммы в области сплавов, богатых золотом, использованы результаты работы [18], выполненной методами термического, микроструктурного и рентгеновского анализов, причем последний проводили как при комнатной, так и при повышенных температурах. Для приготовления сплавов применялись исходные металлы чистотой более 99,99%. Отжиг сплавов для достижения равновесия производили в эвакуированных ампулах в течение 24 часов при 600 , трех месяцев при 240° и восьми месяцев при 150°. Превращения р фазы приведены на диаграмме по результатам работы [15], выполненной методами рентгеноструктурного анализа. Участок диаграммы в области богатых кадмием сплавов приведен по результатам работ [5—7], выполненных методами термического и микроструктурного анализов и с помощью измерения электросопротивления и электродвижущей силы.  [c.22]


Диаграмма состояния. Диаграмма состояния системы УЬ — Са в интервале 900—400°, построенная [1] по результатам исследований, выполненных методами термического и микроструктурного анализов и измерением электросопротивления, приведена на рис. 437. Сплавы для исследований были приготовлены из иттербия чистотой 99,8% и кальция — 99,96%. Как следует из диаграммы, в исследованном интервале температур изоморфные модификации иттербия и кальция образуют непрерывные ряды твердых растворов.  [c.641]

Весьма важно подобрать необходимую скорость струи переносящего газа, поскольку при больших скоростях течения парциальное давление паров металла в печи может оказаться значительно более низким, чем равновесное. Во-первых, диффузия от поверхности сплава через газовый поток идет с конечной скоростью. Во-вторых, может иметь место явление истощения (изменение концентрации) на поверхности сплава. Последний источник погрешности должен особенно учитываться для сплавов в твердом состоянии. Для приблизительного достижения условий равновесия поверхность сплава увеличивают путем помещения в печь ряда лодочек со сплавом. При необходимости результаты, полученные при разных скоростях газа, экстраполируются до предельного случая квазистатического измерения при нулевой скорости. Однако, как указали Бурмейстер и Еллинек [39], эта операция может вне-  [c.107]

Рентгеновский метод можно также использовать для построения кривых солидуса. Одна из методик построения кривых соли-дуса ничем не отличается от построения кривых ограниченной растворимости компонентов в твердом состоянии. Согласно другой методике, образцы заданного состава закаливают с постепенно повышаюп],ихся температур. Если сплав закаливается с температуры ниже солидуса, то его период решетки остается постоянным, а если с температуры выше солидуса, то Состав находящегося в равновесии с жидкой фазой а-твердого раствора будет отличаться от состава исходного сплава и соответственно изменяется его период решетки. Результаты измерения периода решетки а-твердого раствора нескольких образцов, закаленных с температур выше солидуса, дают возможность построить кривую зависимости периода решетки от температуры и экстраполировать эту кривую до температуры, отвечающей периоду решетки полностью твердого сплава. Однако часто трудно избежать или ограничить спекание порошков сплава в процессе отжига при температурах выше солидуса, в то время как рентгенограммы могут оказаться неясными из-за появления на них дифракционных линий от составляющих, присутствующих в сплаве, закаленном из жидкого состояния.  [c.102]


Во-первых, можно построить всю диаграмму состояния по ряду горизонтальных разрезов. Для этого можно последовательно для ряда разных темп-р провести измерения любого физич, свойства сплавов разного состава. При переходе от сплава с одним типом строения к сплаву с другим строением любое физич, свойство изменится б. или м, резким скачком. На этом положении, как это особенно ярко отметил акад. Н. Курнаков, основан весь физико-химич. анализ. Между двумя соседними по концентрации сплавами, при переходе от одного из к-рых к другому обнарушивается скачкообразное изменение свойства, мы помещаем точку превращения Получив ряд таких точек для разных темп-р, соеди-няем их одной сплошной линией превращения. Подобного рода построение дано на фиг. 3, где горизонтали показывают исследованные температуры, точки на горизонталях соответствуют концентрациям исследованных сплавов, а крестики между двумя точками указывают, между какими сплавами было отмечено резкое изменение свойства. На одном горизонтальном разрезе может оказаться несколько точек превращения. В атом случав и на диаграмме состояния будет несколько линий. В качестве измеряемого физич, свойства можно взять твердость, временное сопротивление, сопротивление удару, электропроводность, магнитную индукцию, темп-рные коэф-ты указанных свойств, электрохимич, потенциал, плотность, коэф, линейного расширения и т, д. В аависимости от величины скачка в изменении того или иного свойства в момент изменения состояния, а также в зависимости от чувствительности метода измерения того или иного свойства в разных случаях оказывается наиболее выгодным привлечь различные свойства к исследованию изменений в строении. Особенно хорошие результаты обычно дают измерения электропроводности и ее темп-рного коэф-та, твердости и магнитных свойств. Нек-рые из методов измерения физич. свойств, как напр, метод электропроводности, м. б. применены к исследованию любых изменений состояния как в жидких, так и твердых металлах. Другие методы, как напр, метод твердости, по самому своему определению могут применяться только при исследовании превращений в твердом состоянии.  [c.378]

Аналогичное явление наблюдается в сплаве —Л1—2п—Мп (8,88 % А1, 0,69 % 2п и 0,17 % Мп). Напротив, сплав М —2п—2г, содержащий 3,93 % 2п и 1,1 % 2г, получается хорошо прозрачным по крайней мере при благоприятном положении литья (в вертикальном положении в противоположность горизонтальному), хотя часть циркония располагается на границах зереи в виде нерастворимого окснда циркония. После термического улучшения затухание обычно несколько уменьшается, но в некоторых случаях, наоборот,. увеличивается, чего собственно и следовало ожидать, так как термическое улучшение основывается на выделениях из пересыщенного твердого раствора. Поэтому при очень большой непрозрачности в исходном состоянии по величине затухания еще нельзя судить об эффективности термического улучшения. Поскольку неразрушающий контроль этой эффективности представляет интерес для практики, перспективным, видимо, может оказаться измерение поперечной скорости звука, которая в вышеупомянутых сплавах в литом состоянии в результате термического улучшения повышается — в отличие от продольной скорости звука, которая практически почти не изменяется [1452].  [c.608]

Исходя из приведенных выше данных об особенностях микроструктуры закаленных сплавов, можно предположить, что термодинамический стимул к структурным превращениям в них при отжиге будет значительно выше, чем у литых сплавов. Для проверки этого предположения была проведена серия отжигов закаленных сплавов в интервале температур твердо-жидкофазного равновесия. Из полученных результатов следует, что охлаждение медносвинцового расплава монотектического состава с относительно небольшой скоростью позволило зафиксировать метастабиль-ное структурное состояние, восприимчивое к термической обработке, в результате чего стал возможным контроль размеров свинцовых включений, а их форма приблизилась к сферической. Так, после ЗЖС средний размер свинцовых включений становится однозначной функцией температуры отжига (при нагреве). Для уточнения схемы структурных превращений, имеющих место при отжиге закаленного сплава, были также привлечены данные измерения электросопротивления, механических свойств, рентгеноструктурного, рентгеновского фотоэлектронного анализа и др. Снижение электросопротивления при отжиге естественно связать с вьщелением свинца из пересыщенного твердого раствора на основе меди, в то время как уменьшение прочности на разрыв можно объяснить только тем, что этот избыточный свинец локализуется не только изолированно в местах стыка трех зерен, но и по границам зерен меди, увеличивая тем самым число медных зерен, разделенных сеткой свинца.  [c.209]


Хотя эти методы и находят ограниченное применение при исследовании диаграмм состояния, измерение твердости оказывается полезным в тех случаях, когда нельзя использовать микроскопический метод из-за плохой травимости фаз или других трудностей. Кривая твердости в зависимости рт состава для твердых растворов носит непрерывный характер, и изменение в наклоне этой кривой обычно наблюдается в случае перехода в соседнюю двухфазную область. Однако при использовании метода твердости исследователи сталкиваются со многими трудностями. Например, необходимо, чтобы структура двухфазного сплава была очень мелкой по сравнению с размерами индентора для измерения твердости. Если двухфазная структура слишком груба, то получают ошибочные результаты. Применение метода микротвердости, в котором используется очень небольшой индептор с малыми нагрузками, может оказаться более полезным с помощью этого метода можно измерять микротвердость отдельных зерен, а в двухфазных сплавах часто обнаруживать разницу-в твердости отдельных фаз, которые не отличаются друг от друга под микроскопом при металлографическом исследовании ).  [c.118]

Ранее предполагалось использовать метод измерения электродных потенциалов для построения диаграмм состояния (наряду с термическим дилатометрическим, металлографическим и другими методами анализа металлических систем). Однако большая сложность эффекта установлв ния общего электродного потенциала не позволяет сколько-нибудь широко применить метод исследования электродного потенциала для этих целей, хотя ряд подобных исследований и был проведен. В самом деле, как мы могли видеть, появление новой фазы в сплаве или исчезновение одной из фаз в сложном сплаве не сопровождается резким скачком на кривой потенциал — состав. Наоборот, изменение свойств поверхности в результате растворения анодной фазы или изменения устойчивости защитных пленок может вызвать резкое смещение потенциала и беа появления новой фазы. Тем не менее измерения электрохимических потенциалов твердых растворов и других металлических систем имели большое самостоятельное значение для объяснения основных закономерностей электрохимической коррозии и для установления общих законов получения сплавов повышенной коррозионной стойкости. Это послужило сильным толчком для широкого изучения электродных потенциалов.  [c.200]


Смотреть страницы где упоминается термин Результаты измерений для сплавов в твердом состоянии : [c.430]    [c.210]    [c.55]    [c.203]    [c.237]    [c.74]   
Смотреть главы в:

Термодинамика сплавов  -> Результаты измерений для сплавов в твердом состоянии



ПОИСК



Результат измерения

Состояние, измерение

Сплавы твердые

Твердое состояние

Твёрдые сплавы—см. Сплавы твёрдые



© 2025 Mash-xxl.info Реклама на сайте