Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение твердости металлов и сплавов при высоких температурах

Определение твердости металлов и сплавов при высоких температурах  [c.111]

Определение свойств металлов и сплавов при повышенных температурах обусловлено широким применением высоких температур в различных отраслях техники. Поэтому в технические условия на металлы и сплавы, предназначенные для работы при повышенных температурах (жаропрочные металлы и сплавы), все чаще включают такие механические характеристики, как пределы прочности, текучести, выносливости при повышенных температурах, а также пределы ползучести и длительной прочности. В последнее время все большее распространение получает определение горячей твердости. Особенно важное значение имеют определение пределов ползучести и длительной прочности.  [c.21]


Высокая твердость карбидов и сплавов на их основе при комнатной и высоких температурах позволяет изготавливать из них износостойкие изделия, например фильеры, втулки и вкладыши для горячей и холодной протяжки прутков, проволоки и труб, матрицы для горячей штамповки металлов и сплавов и т. д. Карбиды используются в качестве твердосплавных наплавок для повышения износостойкости инструментов глубокого бурения, сопел пескоструйных аппаратов, режущего инструмента и т, д. Из карбидо-хромовых сплавов изготовляют призмы для высокотемпературных испытаний, шарики для определения твердости до 1000° С и др.  [c.425]

Рещая вопрос о возможности и целесообразности применения ППД для упрочнения конкретных деталей необходимо учитывать ряд его особенностей. Не все металлы и сплавы можно подвергать ППД. Металл должен быть способен пластически деформироваться при комнатной температуре. Металлы с относительным удлинением менее 6%, как правило, трудно обрабатываются или совсем не обрабатываются ППД. Исключение составляют серые и легированные чугуны, которые при определенных условиях можно упрочнять методами ППД. Некоторые материалы нельзя обрабатывать ППД из-за образования большой шероховатости поверхности (алюминиевые сплавы, медь и др.). При упрочнении ППД труднообрабатываемых материалов высокой твердости (НКСэ>45) возникает большой износ металлического инструмента. Такие материалы целесообразно обрабатывать алмазным или твердосплавным отделочно-упрочняющим инструментом.  [c.206]

Для изготовления режущей части инструментов применяют так называемые металлокерамические (спеченные) твердые сплавы, получаемые порошковой металлургией. Исходными материалами для изготовления твердых сплавов являются порошки карбидов тугоплавких металлов вольфрама, титана, тантала и не образующего карбидов кобальта. Порошки смешивают в определенных пропорциях, прессуют в формах и спекают при температуре 1500—2000° С. При спекании твердые сплавы приобретают высокую твердость и в дополнительной термической обработке не нуждаются. Твердые сплавы для изготовления режущих инструментов поставляют в виде пластинок определенной формы и размеров (ГОСТ 2209—69). Пластинки твердых сплавов присоединяют к корпусу инструментов припаиванием или с помощью разнообразных устройств механического крепления (винтов, накладок, клиньев и т. п.). Карбиды вольфрама, титана и тантала обладают высокой тугоплавкостью и твердостью (табл. 4). Они образуют твердый режущий скелет сплава. По сравнению с ними кобальт значительно мягче и прочнее, а потому в сплаве кобальт является связкой, цементирующей режущий скелет.  [c.21]


Еще в начале XX в. было обнаружено, что при деформировании материалов на основе свинца, алюминия, цинка, олова, железа, кадмия и др. в определенных темоературно-скоростных условиях резко падает сопротивление дефЪрмированию этих материалов и становятся чрезвычайно высокими показатели их пластичности, также значительно уменьшаемся твердость. Впервые это явление изучили в 1945 г. советские ученые А. А. Бочвар и Э. А. Свидерская, исследуя свойства алюминиевых и цинковых сплавов. Такое состояние материалов было названо сверхпластичностью. Гипотеза о природе этого эффекта была выдвинута А. А. Бочваром. Суть ее заключается в том, что в состоянии сверхпластичности основную роль в механизме деформации играет межзеренная деформация, а появляющиеся при деформировании дефекты залечиваются вследствие интенсивного перемещения (диффузии) атомов различных фаз. Впоследствии было установлено, что сверхпластичность имеет две разновидности. Первую разновидность, проявляющуюся у металлов и сплавов с особо мелким зерном, называют структурной. Ее отличительными признаками являются зависимость эффекта от исходного размера зерен, с уменьшением которого проявление эффекта сверхпластичности увеличивается, а также то, что в процессе деформирования размеры и форма зерен практически не изменяются. Вторая разновидность сверхпластичности проявляется у полиморфных металлов и сплавов при их деформировании в процессе фазового превращения и характеризуется постоянным изменением фазового состава и структуры материала в процессе деформирования. Известно, например, что железо может существовать с двумя типами кристаллической решетки — объемноцентрированной (а-железо) в диапазоне температур до 910°С и от 1400 до 1539°С и гранецентрированной (у-железо) при температурах от 910 до 1400°С. Если образец деформиро-  [c.34]

Для экспрессной оценки предела длительной прочности используют метод длительной горячей твердости. Сущность метода заключается в определении длительной твердости металлов при различных выдержках образца под нагрузкой при высокой температуре. Для измерений стандартный твердомер Брииелля оснащают шариком из никелевого сплава и муфельной трубчатой печью. Нагрузка при испытании сохраняется постоянной и составляет 5000 Н. Отпечатки измеряют с точностью 0,05 мм на отсчетном микроскопе МПБ-2. Для обеспечения необходимой точности измерения отпечатка поверхность образца шлифуют на микронной бумаге. Хорошие результаты дает легкое антикоррозионное хромирование поверхности.  [c.220]

Сплавы из смеси двух металлов приобретают максимальную прочность при некоторой определенной дозировке двух компонентов, причем прочность сплава может оказаться более высокой, чем прочность каждого из компонентов в отдельности. Оптимальную прочность можно иногда получить путем добавки к чистому металлическому элементу очень малого количества другого металла. Так, например, введение примерно 100 г серебра к 1 т свободной от примеси кислорода меди повышает сопротивление ползучести меди прп температурах от 120 до 150° С (т. е. понижает до минимальной величины малую скорость, с которой медь непрерывно деформируется под постоянным напряжением и при указанных температурах). Оптимальная прочность и наибольшая твердость в сплавах достигаются путем соответствующей термообработки, с последующим охлаждением, которое производится с требуемой скоростью, включая и очень высокую скорость (закалка). Термической обработкой достигаются еще и две другие важные цели 1) отжиг для снятия напряжений (обычно при умеренно высоких температурах) и 2) рекристаллизация в сочетании с предварительным наклепом. Благодаря отжигу снимаются нежелательные и вредные системы начальных или остаточных напряжений (здегь мы имеем применение процесса релаксации, о котором упоминалось в гл. I, на стр. 12), обусловленные различными технологическими процессами при изготовлении и механической обработке металлических изделий. Остаточные напряжения вызываются термическими напряжениями при неравномерном нагреве или охлаждении (в отлитых или сваренных изделиях), неравномерными пластическими деформациями (в полученных посредством прокатки полосах, листах и т. п.) пли теми и другими вместе. Наконец, остаточные напряжения могут возникнуть и при механической обработке (вызывающей пластические деформации в поверхностном слое, в результате давления режущего инструмента).  [c.61]


Пластическими массами называют высоко-полимерные материалы или композиции их с органическими или неорганическими веществами, способные при определенных условиях (давлении п температуре) переходить в пластическое состояиие и принимать под действием- нагрузок заданную форму. Пластические массы сочетают ряд ценных свойств. Они имеют низкую плотность, устойчивы к атмосферной коррозии, ко многим кислотам и щелочам, растворам солей, являются теплоизоляционными материалами, хорошими диэлектриками, могут быть оптически- и радиопрозрачиыми, упругими или эластичными. Оии легко формуются в изделия, обрабатываются резанием, а некоторые нз них по удельной пррчности превосходят углеродистые стали и сплавы цветных металлов. Но пластмассы имеют низкую теплостойкость, теплопроводность, твердость, подвержены старению. Свойства некоторых пластмасс см. табл. 17.  [c.142]


Смотреть страницы где упоминается термин Определение твердости металлов и сплавов при высоких температурах : [c.2]    [c.23]    [c.235]    [c.61]    [c.126]    [c.126]    [c.96]   
Смотреть главы в:

Технология литья жаропрочных сплавов  -> Определение твердости металлов и сплавов при высоких температурах



ПОИСК



Металлы и сплавы Металлы

Сплавы Твёрдость

Сплавы металлов

Т твердость температура

Твердость металлов Температуры

Твердость металлов и сплавов

Твердость — Определение для металлов

Температура высокая

Температура определение

Температура сплавов



© 2025 Mash-xxl.info Реклама на сайте