ПОИСК Статьи Чертежи Таблицы Вариационные задачи газовой динамики из "Аналитические исследования динамики газа и жидкости " Рассматриваемые здесь вариационные задачи заключаются в определении формы тел, обладающих минимальным волновым сопротивлением в плоскопараллельном или осесимметричном сверхзвуковом потоке газа, и контуров сопел, реализующих максимальную силу тяги при некоторых ограничениях. Силы, действующие на тела при течениях невязкого газа, определяются давлением на стенки. Величина давления находится из рещения граничных задач для нелинейных уравнений газовой динамики. Такие задачи в настоящее время решаются численно. Нахождение решения вариационных задач со связями в виде уравнений с частными производными приводит к сложным численным процессам. О таком прямом подходе к оптимизации формы тел будет сказано в послесловии к этой главе. Здесь будет рассмотрен подход, который в плоскопараллельном и осесимметричном случаях допускает точную одномерную постановку ряда вариационных задач и их простое решение. [c.45] Такой подход был предложен Никольским [1]. В его работе предлагается постановка вариационной задачи для функций на контрольном контуре, состоящем из двух характеристик уравнений газовой динамики разных семейств. В этом случае функционал, выражающий сопротивление тела и некоторые дополнительные условия, выписывается явно. После определения функций на контрольном контуре остается решить задачу Гурса с известными функциями на характеристиках. Никольский [1] решил вариационную задачу об оптимальной форме тела вращения на основе линеаризованных уравнений газовой динамики, однако, основная идея этой работы применима и к точным уравнениям. [c.45] В большинстве случаев вариационные задачи механики оказываются вырожденными. Это приводит к тому, что их решение частично или полностью совпадает с границами области допустимых функций. Метод решения таких задач был разработан и опубликован в ряде статей Охоцимским. Первой из них была работа [2]. [c.45] Результаты работ [5, 6] несколько позже были получены Pao [8] для несовершенного газа. Подход Pao отличается от использованного в работах [3-6]. Его обоснование было дано Гудерлеем [9], а объяснение причины удачи Pao — в статье [10]. В работе [9] приведено также решение задачи в случае вихревых течений, когда плотность и давление представимы в виде произведений функций от энтропии на функции от энтальпии. Определению оптимальной формы сопла с учетом веса его стенок посвящена статья Стернина [11]. Один вариант задачи о наилучшей форме тела вращения рассмотрен Pao [12]. Перечисленные результаты получены на основе необходимых условий экстремума. [c.46] При решении вариационных задач газовой динамики необходимо знать предельные (определяемые граничными условиями) свойства сверхзвуковых течений. Исследование таких свойств для осесимметричных течений разреженияпроведено в ft3f, а для течений сжатия — в [14]. [c.46] Отсутствие азимутальной составляющей вектора скорости в рассмотренных вариационных задачах при осевой симметрии является ограничением, которое может, например, снизить силу тяти оптимального сопла. В работах [19, 20] на примере присутствия потенциальной закрутки потока вокруг оси симметрии выведены необходимые условия экстремума и продемонстрировано увеличение силы тяги. Дальнейшие исследования в этом направлении проведены Гудерлеем, Табаком, Брей-тером и Бхутани [21]. Систематическое сравнение оптимальных сопел этого типа выполнено Тилляевой [22]. [c.47] На основе необходимых условий экстремума найдена [26, 27] величина максимального сопротивления одной осесимметричной конфигурации, обтекаемой сверхзвуковым потоком. [c.47] В этой главе воспроизводятся результаты работ [5, 6, 13, 14, 16, 18-20, 24, 26, 27]. [c.47] Вернуться к основной статье