Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физико-механические свойства на плотность - Методы

Полиамиды— материалы бесцветного или желтовато-коричневого цвета характеризуются небольшой плотностью, высокими ударной вязкостью, прочностью на растяжение, на сжатие и изгиб, способностью к поглощению вибраций, твердостью, износостойкостью, незначительным коэффициентом трения. Сочетание высоких физико-механических свойств способствовало их широкому применению в технике в качестве конструкционного и антифрикционного материалов. В отличие от других пластиков полиамиды обладают способностью изменять эксплуатационные свойства в зависимости от структуры материала перерабатываются в изделия методом литья под давлением, экструзией, центробежным литьем, в некоторых случаях — свободным литьем.  [c.262]


В заключение необходимо отметить, что приведенные примеры расчета методами теории фракталов сложных нелинейных взаимосвязей параметров структуры и физико-механических свойств стохастической волокнистой системы целиком базируются на учете флуктуаций плотности и подчеркивают их определяющую роль в технологических процессах изготовления композиционных материалов.  [c.237]

Методом порошковой металлургии изготовляют разнообразные конструкционные детали с различными физико-механическими свойствами плотностью, твердостью, прочностью, коррозионной стойкостью, износостойкостью, жаростойкостью и др. Их можно подвергать термической и химико-термической обработке, наносить на них заш,итные антикоррозионные покрытия, пропитывать машинным маслом, металлами и полимерами.  [c.506]

В последнее время проводились работы в области механики полимеров, создания методов расчета деталей из полимеров на прочность, комплексного изучения их физико-механических характеристик. Изучаются теории, необходимые для решения задач о деформированном и напряженном состоянии упруго-вязких полимеров. Получила развитие теория и накоплен обширный экспериментальный материал в области температурно-временной зависимости прочности, развиты представления о статической усталости армированных систем на основании свойств отдельных компонентов, показано существование предела длительной статической прочности. Для описания условий разрушения предложены критерии предельного состояния, экспериментально показана зависимость плотности и упругости. Определенное развитие получили представления о взаимосвязи структуры полимеров и их механиче ских свойств, а также структурная механика армированных систем.  [c.215]

К косвенным относятся методы определения физико-химических свойств и состава топлив. На стандартных приборах в лабораторных условиях определяют физико-химические свойства горючего, например плотность, вязкость, фракционный состав, содержание воды, механических примесей и т.д. По этим показателям делают вывод о соответствии качества горючего требованиям ГОСТ или ТУ и косвенно судят об эксплуатационных свойствах горючего.  [c.38]

Непрерывные волокна из оксида алюминия имеют либо структуру шпинели ( ) -А12 0з), либо структуру а-Л12 0з. Для армирования материалов могут использоваться оба указанных типа непрерывных волокон из оксида алюминия [24—25]. Их физико-механические свойства приведены в табл. 8.8, а на рис. 8.12 показаны их микрофотографии, полученные методом растровой электронной микроскопии. Волокна из оксида алюминия со структурой шпинели изготавливают путем спекания в воздушной среде волокон, полученных прядением по мокрому методу из раствора, содержащего полимер алюминийорганического соединения и кремнийорганическое соединение. Такие волокна состоят из микрокристаллов размером порядка 10 нм, сохраняют стабильную структуру до высоких температур и содержат около 15 масс. % оксида кремния. Волокна из а-Д12 Оз также изготовляют спеканием в воздушной среде волокон, полученных прядением из суспензии мелкодисперсного порошка а-Л12 0з в основном хлориде алюминия. Агломераты частиц имеют размер 0,5 мкм. Достоинствами этих двух типов армирующих волокон из оксида алюминия по сравнению с углеродными волокнами являются электроизоляционные свойства, бесцветность, стабильность свойств на воздухе при высоких температурах и при контакте с расплавленными металлами. Их недостаток — сравнительно высокая плотность. Различие структуры указанных двух типов непрерывных волокон из оксида алюминия приводит к различию их физических свойств. Волокна со структурой шпинели имеют большую прочность и поддаются текстильной переработке для получения ткани и т. д. Эти волокна имеют меньшую плотность, чем волокна из a-Al2 О3. С другой стороны, волокна из a-Al2 О3 имеют более высокий модуль упругости. Различия этих двух типов волокон подобны различиям между двумя типами углеродных волокон карбонизованными и графитизированными.  [c.280]


Дефекты ухудшают физико-механические свойства металлов, например прочность, пластичность, плотность, электропроводность, магнитную проницаемость и т.д. Их часто разделяют на явные и скрытые. Первые обнаруживают при визуальном способе контроля или при помощи инструментальных средств и методов, которые приведены в нормативной документации. Если дефекты с большой вероятностью выяв тяются с по.мошью соответствующих инструментальных методов неразрушающего контроля, но не обнаруживаются визуальной, то их тоже относят к явным. Скрытый дефект нельзя обнаружить предусмотренным методом и аппаратурой.  [c.85]

Очевидно, что контроль соответствия жесткости пенополпуре-тана предъявляемым требованиям необходимо проводить не только в готовой оболочке, но и в готовом кресле, так как при этом система крепления ножек может создавать дополнительные напряжения на основание оболочек. Разработаны специальные методы для испытания оболочек кресел на хрупкое и усталостное разрушение. Однако при разработке новых улучшенных конструкций оболочек или материалов необходимо устанавливать связь результатов, получаемых при использовании этих специальных с результатами стандартных лабораторных испытаний физико-механических свойств пенополиуретана. Типичные свойства жестких пенополиуретанов плотностью 30 и 50 кг/см приведены в табл. 12.6.  [c.440]

Влияние наводороживания на охрупчивание металлов, т. е. повышение его склонности к хрупкому разрушению, известно давно. Водород, проникающий в металл при его изготовлении, термической обработке, сварке, а также при травлении, нанесении электролитических покрытий и, наконец, в процессе эксплуатации материала в некоторых активных средах, значительно ухудшает физико-механические свойства стали и, следовательно, понижает работоспособность конструкций. Склонность к хрупкому разрушению под действием водорода у мягких сталей довольно ярко проявляется в снижении их пластичности (уменьшении значений л и б), а также в уменьшении величины характеристик технологической пробы на перегиб и скручивание. Оценить склонность к хрупкому разрушению под действием водорода у высокопрочных и малопластичных материалов указанными методами довольно трудно. В таких случаях данные о трещиностойкости материала являются важным показателем степени влияния наводороживания на хрупкую прочность стали. Приведем результаты таких исследований на стали У8 в закаленном и низкоотпу-щенном состоянии. Эти исследования проводили на пластинах размером 360 X 180 мм с центральной изолированной трещиной [13, 49], подвергнутой растяжению сосредоточенной нагрузкой (см. приложение 3, рис. 117, а). После нескольких замеров параметров, характеризующих распространение трещины в данном материале в среде воздуха лабораторного помещения, образец снимали с разрывной машины и помещали в ванну для насыщения водородом. Наводороживание проводили в 20%-ном растворе серной кислоты при плотности тока 8 шдм в течение 2 ч. Немедленно после наводороживания определяли трещиностойкость наводо-  [c.158]

Рентгеноструктурный анализ сварных соединений показал, что ТЦО приводит к уменьшению плотности дислокаций вследствие измельчения зерен и миграции дислокаций при многократных фазовых превращениях в энергетически более выгодные зоны (на границы зерен), где происходит их аннигиляция. Несмотря на уменьшение числа дислокаций у границ зерен, их общая плотность сохраняется достаточно высокой. Очевидно, что основным механизмом, обусловливающим изменение комплекса физико-механических свойств сварных соединений, является дислокационный. Это подтверждается при качественной оценке влияния ТЦО на структурные превращения в сварных соединениях методом внутреннего трения [101], электронной микроскопией и фрактографи-ческим анализом [213].  [c.223]

Детонационные покрытия — наиболее новый и наименее изученный тип покрытий, наносимых при помощи специальных устройств (пушек), в камере сгорания которых возбуждается детонация. В кислородно-ацетиленовой или иной подобной смеси, заполняющей камеру сгорания, распыляется порошок материала для покрытия, после чего смесь поджигают электроискрой возникающая детонационная волна выбрасывает частицы со сверхзвуковой скоростью на поверхность покрываемого изделия. Механические и физико-технические свойства покрытий — плотность, прочность, термостойкость, сопротивление истиранию и особенно действию ударных нагрузок намного превосходят свойства покрытий, получаемых методами плазменного и газопламенного напыления. Плотность детонационных покрытий близка к 100%, прочность сцепления с основой высокая.  [c.10]


При помощи этих методов непосредственно в изделии можно определить прочностные и упругие характеристики, содержание связующего, плотность, степень ориентации стеклонанолнителя, т. е. те свойства, которые наиболее существенно влияют на прочность и другие физико-механические показатели. Следует отметить, что для определения этих параметров необходимо комплексное применение нескольких неразрушающих методов, с тем чтобы получить наиболее достоверную информацию о свойствах стеклопластика. На наш взгляд, не менее важным является также применение неразрушающих методов для оценки и учета факторов, влияющих на качество и надежность изделий, таких как нарушения направленности стекловолокна, ошибки при укладке продольных и поперечных волокон, пористость, недоотвержденность, раковины, расслоения и инородные включения. Использование неразрушающих методов при изготовлении изделий позволит выбирать наиболее оптимальные технологические режимы.  [c.6]


Смотреть страницы где упоминается термин Физико-механические свойства на плотность - Методы : [c.233]    [c.111]    [c.126]    [c.683]    [c.29]    [c.526]   
Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.463 ]



ПОИСК



59-1-Механические Физико-механические свойства

Метод механический

Физико-механические свойств

Физико-механические свойства свойства



© 2025 Mash-xxl.info Реклама на сайте