Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы орбиты Делонэ

Элементы орбиты Делонэ 385  [c.569]

Введенные канонически сопряженные переменные Д, /25 wi, W2, W3 называются каноническими переменными Делонэ или кратко, элементами Делонэ. Следуя Делонэ, для них часто используются обозначения G, L, /г, g, I (не путать обозначения L, h элементов Делонэ с обозначениями функций Гамильтона, Лагранжа и константы интеграла энергии ). Элементы Делонэ связаны с обычными элементами орбиты П, г, а, е, j, т следующими получаемыми из (68)-(72) соотношениями  [c.386]


В некоторых методах, применяемых в теории движения Луны, особенно в методе, использованном Делонэ, требуется разложение возмущающей функции по эллиптическим элементам орбит Луны и Солнца. В качестве первого шага к получению такого разложения необходимо рассмотреть os 5. Пусть SI есть долгота восходящего узла орбиты Луны, У— наклонность орбиты Луны к эклиптике, d —угловое расстояние лунного перигея от восходящего узла, / — истинная аномалия. Пусть, далее, ш, / означают соответствующие углы для Солнца. Наконец, положим истинные долготы Луны и Солнца равными соответственно  [c.270]

Первые четыре главы книги посвящены общим уравнениям движения тел, представляющих изолированную систему, известным интегралам, основным формулам эллиптического движения и разложению различных функций в гипергеометрические ряды и по функциям Бесселя. В гл. 5 достаточно подробно излагаются уравнения Лагранжа для оскулирующих элементов, чтобы читатель мог ознакомиться с основными процессами перехода от эллиптической орбиты к возмущениям планет. В гл. 6 рассматриваются различные классы неравенств —вековые, короткопериодические и долгопериодические. Гл. 7 посвящена разложению в ряд возмущающей функции, сначала в теории Луны, а затем в теории движения планет. В гл. 8 —о канонических уравнениях — шаг за шагом излагаются различные теоретические положения и приводятся простые примеры. В гл. 9 подробно рассматривается решение уравнений эллиптического движения при помощи метода Гамильтона — Якоби. В следующих двух главах излагаются элементы теории контактных преобразований. Гл. 12 посвящена теории Луны Делонэ в ней подробно описывается основная операция и дается практический метод получения решения п желаемой форме. В следующих двух главах рассматриваются вековые  [c.7]

Введение. Слово теория употребляется в небесной механике для обозначения некоторого математического выражения, из которого можно получить координаты небесного тела как функции времени. Существуют теории двух типов — специальные и общие. Специальной теорией является такая теория, которая дает координаты только для частных значений времени численное интегрирование уравнсни гелиоцентрического движения кометы пли планеты является примером специальной теории. В общей теории время изображается символом, вместо которого по желанию можно подставить любое значение и получить координаты для соответствующей даты поэтому общая теория не может быть целиком численной по форме. Она может быть целиком аналитической, как, например, теория Луны Делонэ, которая выражает координаты в виде функций от семи символов, соответствующих шести элементам орбиты и иремени либо она может быть частично аналитической и частично численной, как, напрпмер, теория Луны Брауна, в которой вместо некоторых элементов подставлены численные значения. Имеются также общие теории, в которых численные значения подставляются вместо всех элементов, и единственной величиной, обозначенной символом, является время, напрпмер, теория Юпитера Хилла такие теории обычно, хотя и несколько неточно, называются числениы.ми общи.ми теориями.  [c.178]


В силу разложений координат эллиптического кеплеровского [движения эти ряды будут являться степенными относительнс эксцентриситета и наклонности оскулирующей орбиты, которые выражаются через элементы Делонэ формулами (13.57 ), вслед-] ствие чего упомянутые ряды будут иметь весьма сложнун I структуру.  [c.694]


Смотреть страницы где упоминается термин Элементы орбиты Делонэ : [c.465]    [c.438]   
Теоретическая механика (1999) -- [ c.385 ]



ПОИСК



Делонэ

Орбита

Элементы Делонэ

Элементы орбиты

Элементы орбиты Делонэ Пуанкаре

Элементы орбиты Делонэ кеплеровские



© 2025 Mash-xxl.info Реклама на сайте