Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классификация волн примеры

Формулировка проблемы. Первым шагом при решении задачи уменьшения шумов, порождаемых какой-либо отдельной деталью двигателя, является классификация этого шума и определение его доли в общем шуме двигателя. Обычно измерение уровня шумов проводится с полностью покрытым звукоизоляцией двигателем, и далее исследуются независимо друг от друга основные источники шума. Однако разработанные в последнее время приборы позволяют определять вклад различных источников шума с помощью измерения различных параметров на поверхности двигателя без покрытия его звукоизоляцией. Именно такие приборы для измерений интенсивности акустических колебаний здесь широко применялись. Их работа основана на измерении уровней звукового давления с помощью двух микрофонов, установленных около поверхности исследуемого узла. По результатам измерений, получаемых при помощи микрофонов, можно определить интенсивность излучения акустических волн в заданном направлении. Обследовав таким образом всю поверхность узла и просуммировав полученные результаты, можно определить мощность акустического излучения этого узла. Подобные приборы можно использовать как на работающем двигателе, так и на неработающем. В последнем случае к двигателю прикладывается сила, возбуждающая колебания, по возможности близкие тем, что возникают в работающем двигателе. Данный подход удобен для исследования влияния тех или иных внешних условий, например температуры окружающей среды, на работу демпфирующего покрытия, что будет проиллюстрировано на примере крышки клапанов.  [c.374]


Различия между некоторыми типами вторичного свечения достаточно условны и определить их оказывается возможным при рассмотрении классификации вторичного свечения в зависимости от тех или иных параметров, выбор которых зависит от предпочтений исследователя или от физики исследуемого явления. Проиллюстрируем это на следующем примере. Если в качестве такого параметра взять время I между актами поглощения и испускания фотонов, то условно можно прийти к следующему разбиению по типам вторичного свечения на такой временной шкале (рис. 1.1). Спустя время, равное периоду волны  [c.14]

Имеется большой круг важных, с точки зрения приложений, задач (примеры — излучение из пирамидального рупора и рупорно-параболической антенны, дифракция на прямоугольном отверстии в плоском экране), в которых кромки имеют точки излома (угловые точки). При классификации типов переходных областей ( 4.1) было упомянуто, что в этом случае одновременно образуются и краевые и сферические дифракционные волны. Границы свет — тень здесь имеют и ГО (первичная и отраженные) и краевые волны.  [c.156]

Для лучшего уяснения приведенной классификации начнем с примера. Рассмотрим круглое отверстие и точечный источник на его оси. Пусть сначала точка наблюдения также находится на оси. Если в отверстии укладывается небольшая часть первой зоны Френеля, то дифракция будет фраунгоферовой. В этом случае все колебания в плоскости отверстия совершаются и приходят в точку наблюдения практически в одинаковых фазах. При смещении точки наблюдения вбок появляются разности фаз между вторичными волнами, приходящими в точку наблюдения от различных точек отверстия. Этим и обусловлено появление дифракционных колец. Если отверстие заменить непрозрачным экраном, то этот случай, по соображениям, которые выяснятся в пункте 4, также относят к дифракции Фраунгофера. Если же в отверстии или экране (для точки наблюдения, лежащей на оси системы) укладывается заметная часть первой зоны или несколько зон Френеля, то дифракция считается френелевой.  [c.278]

В 5.9—5.14 в основном по работам Дж. Бейзера с соавторами дано довольно полное изложение нелинейных одномерных волновых движений для идеальных проводников сначала определены характерные скорости и области ( 5.10), затем получены соответствующие условия на скачках Ренки-на —Гюгонио ( 5.11), дана классификация возможных решений в виде ударных волн ( 5.12) и введены некоторые элементарные понятия о простых волнах ( 5.13). Качественный анализ в рамках развитой теории магнитоупругих ударных волн и простых волн дан в 5.14 для задачи о так называемом магнитоупругом поршне (решение в линейном приближении будет также получено геометрическими методами 5.8). В заключение, чтобы почувствовать некоторые особенности анализа магнитоупругой устойчивости токонесущих структур, рассмотрен классический пример растянутого проводящего стержня и токонесущих пластин.  [c.266]


Структурно-устойчивые каустики отнюдь не исчерпывают типы особенностей лучевых структур, возникающих в физических задачах. Это связано с различием классов возмущений, которые рассматриваются в теории катастроф и реализуются, вообще говоря, в конкретных физических задачах. Например, структурно-неустойчивыми оказываются такие, обладающие несомненной физической значимостью, объекты, как плоская и сферическая волны [151, 304]. Далее, не всегда выполняются условия достаточной гладкости функции р (г. г, ,ef) в (17.1). В средах со слабыми границами раздела, на которых испытывает разрыв градиент скорости звука, образуются разрывные (оборванные) каустики (см. [1, 428, 429, 448, 469] ). При переходе точки наблюдения через любую ветвь структурно-устойчи-вой каустики количество приходящих лучей меняется на четное число. Как мы видели в 9 и 14, в случае каустики с просачиванием или каустики, образованной при участии дифракционного луча, число приходящих лучей меняется на единицу. Указанные образования не подпадают под классификацию на основе теории катастроф. Другие примеры см. в [151, 4], [152].  [c.385]


Линейные и нелинейные волны (0) -- [ c.119 ]



ПОИСК



Классификация волн



© 2025 Mash-xxl.info Реклама на сайте